Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute)
END SEMESTER EXAMINATION
Second Year B.Tech (Mechanical Engineering) - Feb/Mar-2023

Course Code: MED 202
Duration : 2 Hrs
Instructions:

Course Name : Fluid Mechanics and Fluid Machines
Max. Marks: 50
i) All questions are compulsory
ii) Use of nonprogrammable calculator is allowed
iii) Assume suitable data wherever necessary and clearly state it
iv) Figures to right indicate full marks

Q.	Answer any five(Marks:10)				
		Mark \mathbf{S}	C	B	PI
a)	Mass density is defined as mass per unit volume and its unit is $\mathrm{kg} / \mathrm{m}^{3}$. And Specific gravity is defined as mass density of any fluid by mass density of standard fluid (No unit)	2	01	I	1.1 1
b)	Define Velocity potential function and stream function The velocity potential function is a scalar function such that its negative derivative along any direction will give the velocity component in that direction. $\begin{aligned} & u=-\partial \varphi / \partial x \\ & v=-\partial \varphi / \partial y \end{aligned}$ The stream function is a scalar function such that its derivative along any direction gives the velocity component in the perpendicular direction, in the clockwise or anticlockwise direction. $u=\partial \psi / \partial y, v=-\partial \psi / \partial x$	2	01	I	$\begin{aligned} & 1.1 \\ & 1 \end{aligned}$
c)	According to Bernoulli's theorem, the sum of the energies possessed by a flowing liquid at a point is constant and head loss of energy have to consider between two points, provided that the liquid is incompressible and viscous and flow in streamline.	2	01	I	$\begin{aligned} & 1.4 . \\ & 1 \end{aligned}$
d)	1. Head loss at entrance 2. Head loss due to sudden enlargement 3. Head loss due to sudden contraction 4.Head loss die to obstacles in pipeline 5. Head loss due to Bend 6. Head loss due to exit at pipe 7. Head loss in pipe fitting	2	01	I	$\begin{aligned} & 1.3 . \\ & 1 \end{aligned}$
e)	Mass density Weight density Specific gravity Viscosity, surface tension, capillarity	2	01	I	$\begin{aligned} & 1.1 \\ & 1 \end{aligned}$
f)		2	01	I	1.4 1

g)	Impulse turbine is that turbine in which energy available at inlet is kinetic energy and in reaction turbine energy available at inlet is kinetic as well as pressure energy		2	01	I	1.1. 1
h)	The function of draft tube is to deliver the water to tailrace without head or energy loss		2	01	I	1.1.
$\xrightarrow{\text { Q }}$	Solulion, Given: Viscosily $\begin{aligned} & \mu=6 \text { poise } \\ & =\frac{6}{10} \frac{\mathrm{Ns}}{\mathrm{~m}^{2}}=0.6 \frac{\mathrm{Ns}}{\mathrm{~m}^{2}} \end{aligned}$ Dia, of shaft, $D=0.4 \mathrm{~m}$ Speed of shaft, Slecre length, $\begin{aligned} & N=190 \mathrm{rp}, \mathrm{~m} \\ & -1=90 \mathrm{~mm}=90 \times 10^{-3} \mathrm{~m} \end{aligned}$ Thickness of oil film, Tangential velocity of shat, if $=\frac{\pi D N}{60}=\frac{\pi \times 0.4 \times 190}{60}=3.98 \mathrm{~m} / \mathrm{s}$ Using therelation $\quad \tau=u \frac{d u}{d y}$ where $d u=$ Change of whocity $=u-0=u=3.98 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} d y=\text { Change of distance }=1 & =1.5 \times 10^{-3} \mathrm{~m} y \\ t & \frac{6}{1} \times \frac{3.98}{15 \times 10^{-3}}=1592 \mathrm{Nm} \end{aligned}$ This is shear stress on staft \therefore Shear forc on le she sif, $P=$ Shear stress x Area $=1592 \times \pi D \times L=1592 \times \pi \times .4 \times 90 \times 10^{3}=180.05 \mathrm{~N}$ Torquéon the shaft, $T=$ Force $x \frac{D}{2}=180.05 \times \frac{0.4}{2}=30.01 \mathrm{Nm}$: \therefore Powerlos $\quad=\frac{2 \pi N T}{60}=\frac{2 \pi \times 100 \times 36.01}{60}=716.48 \mathrm{~W}$. Ans.		8	02	II	1.3 1
Q.	Differentiate between (i) Laminar flow and turbulent flow Laminar flows are smooth and streamlined, whereas turbulent flows are irregular and chaotic. A low Reynolds number indicates laminar flow while a high Reynolds number indicates turbulent flow. The flow behavior drastically changes if it is laminar vs. turbulent. In complex systems, the analysis of laminar and turbulent flow becomes crucial for efficient operational design. (ii) Venturimetr and orifice meter		8	03	II	1.4 1

	More head loss \quad Less head loss				
	High power losses				
	Highly flexible \quad Less flexible				
	Small in size \quad Large in size				
	Less costly Higher cost				
$\mathrm{Q} .$	1 Scroll Casing It is a spiral type of casing that has decreasing cross section area. The water from the penstocks enters the scroll casing and then moves to the guide vanes where the water turns through 90° and flows axially through the runner. It protects the runner, runner blades guide vanes and other internal parts of the turbine from an external damage. 2. Guide Vane Mechanism It is the only controlling part of the whole turbine, which opens and closes depending upon the demand of power requirement. In case of more power output requirements, it opens wider to allow more water to hit the blades of the rotor and when low power output requires it closes itself to cease the flow of water. If guide vanes is absent than the turbine can not work efficiently and its efficiency decreases. 3. Draft Tube The pressure at the exit of the runner of Reaction Turbine is generally less than atmospheric pressure. The water at exit cannot be directly discharged to the tail race. A tube or pipe of gradually increasing area is used for discharging water from the exit of turbine to the tail race. This tube of increasing area is called Draft Tube. One end of the tube is connected to the outlet of runner while the other end is sub-merged below the level of water in the tail-race. Runner vanes: The heart of the component in kaplan turbine are its runner blades, as it the rotating part which helps in production of electricity.Its shaft is connected to the shaft of the generator. The runner of the this turbine has a large boss on which its blades are attached and the the blades of the runner is adjustable to an optimum angle of attack for maximum power output. The blades of the Kaplan turbine has twist along its length.	8	02	II	2.1 1

	$\begin{aligned} & \mathrm{Q}=192.5 \mathrm{~m}^{3} / \mathrm{Sec} \\ & \mathrm{D}_{0}=6.21 \mathrm{~m} \\ & \mathrm{~N}=67.5 \mathrm{rpm} \\ & \mathrm{~N}_{\mathrm{s}}=746 \end{aligned}$ OR For Laminar flow in a pipe the drop in pressure Δp is function of pipe length L , its diameter D , mean velocity of of flow V , and the dynamic viscosity μ, Using Raleigh's method, develop the expression for Δp. $\Delta \mathrm{p}=\mathrm{fn}(\mathrm{~L}, \mathrm{D}, \mathrm{~V}, \mu)$ this can be written in terms of dimensionless constant as $\Delta \mathrm{p}=\mathrm{K} \mathrm{~L}^{\mathrm{a}} \mathrm{D}^{\mathrm{b}} \mathrm{~V}^{\mathrm{C}} \mu^{\mathrm{d}}$ Using LMT system of basics $\left(\mathrm{M} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right)=[\mathrm{L}]^{\mathrm{a}}[\mathrm{~L}]^{b}\left[\mathrm{LT}^{-1}\right]^{c}\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]^{d}$ Equating the powers of M d=1 L-1=a+b+c+d T, $-2=c-d=-c=-1, c=1$ $\Delta \mathrm{p}=\mathrm{K} \mathrm{L}^{-1-\mathrm{b}} \mathrm{D}^{\mathrm{b}} \mathrm{V} \mu=\mathrm{K}\{\mathrm{V} \mu / \mathrm{L}\}(\mathrm{D} / \mathrm{L})^{\mathrm{b}}$ $\Delta p=V \mu / L f n(D / L)$,
Q. 6	Write a short note on (i) U Tube Manometer U-tube manometer features a vertical or inclined U-tube column that is filled with a reference liquid (mercury) to display the pressure level. When the columns of the device are exposed to the atmosphere, the levels of liquid in the limbs are equal and this indicates the atmospheric pressure. (ii) Major and Minor losses in pipe Head loss due to friction 1. Head loss at entrance 2. Head loss due to sudden enlargement 3. Head loss due to sudden contraction 4.Head loss die to obstacles in pipeline 5. Head loss due to Bend 6. Head loss due to exit at pipe 7. Head loss in pipe fitting OR (i)Draft tubes Draft Tube is a diverging tube fitted at the exit of runner of turbine and used to utilize the kinetic energy available with water at the exit of runner. '. This draft tube at the end of the turbine increases the pressure of the exiting fluid at the expense of its velocity. Types of draft tubes (i)Conical draft tube. (ii)Simple elbow draft tube.	8	2	III	2.1 1

