

MAHARASHTRA INSTITUTE OF TECHNOLOGY, AURANGABD

An Autonomous Institute Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra (India)

M. Tech. (Manufacturing Engineering) Syllabus

w.e.f. 2022-2023

Chairman Board of Studies

Mechanical Engineering

MIT Aurangabad

(An Autonomous Institute)

Chairman Academic Council
MIT Aurangabad
(An Autonomous Institute)

FACULTY OF SCIENCE AND TECHNOLOGY

Syllabus Structure w.e.f. 2022-2023 (Choice Based Credit System)

M. Tech. (Manufacturing Engineering)

	Semester-I														
		Teaching Scheme (Hours/Week)			Examination Scheme and Marks							Cre	dits		
Course Code	Course Name	Theory	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	TW	PR/OR	Total	ТН	TUT	TW/PR	Total
MFG101	Research Methodology and IPR	3	1	-	15	15	20	50	-	-	100	3	1	1	4
MFG102	Advanced Manufacturing Processes	3	-	1	15	15	20	50	-	-	100	3	1	ı	3
MFG103	Digital Manufacturing	3	_	-	15	15	20	50	_	-	100	3	-	ı	3
MFG104	Quality System and Reliability Engineering	3	-	-	15	15	20	50	-	-	100	3	-	1	3
MFG121 to MFG123	Professional Elective-I	3	-	-	15	15	20	50	-	-	100	3	-	ı	3
MFG111	Lab-I:Data Analytics Lab (R Programming)	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG112	Lab-II: - Master CAM software	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG113	Lab-III: -MATLAB	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG114	Seminar	-	-	4	-	-	-	-	-	50	50	-	-	2	2
Tota	al (Semester-I)	15	1	10	75	75	100	250	75	50	625	15	1	5	21

					Se	mester	·-II								
Course		Teaching Scheme (Hours/Week)			Examination Scheme and Marks						Credits				
Code	Course Name	Theory	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	TW	PR/OR	Total	ТН	TUT	TW/PR	Total
MFG141	Advanced Optimization Techniques	3	1	-	15	15	20	50	-	-	100	3	1	1	4
MFG142	Green Manufacturing	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG143	Characterization of Materials	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG144	Theory of Metal Forming	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG161 -163	Professional Elective-II	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MFG151	Lab-IV (Advanced Optimization Techniques)	-	-	2	-	-	-	-	25	-	25	1	-	1	1
MFG152	Lab-V (Characterization of Materials)	1	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG153	Lab-VI: (Advanced MATLAB)	-	-	2	-	-	-	-	25	-	25	-	-	1	1
MFG154	Mini Project	-	-	4	-	-	-	-	-	50	50	-	-	2	2
	Total (Semester-II)		2	10	75	75	100	250	75	50	625	15	1	5	21
						. `	t Year)								
	Grand Total	30	3	20	150	150	200	500	150	100	1250	30	2	10	42

MSE- Mid Semester Exam, ESE- End Semester Examination, TH-Theory, OR- Oral, TA-Teacher Assessment, TW- Term Work, PR- Practical, Tut- Tutorial

				S	emes	ter-	III									
Course		Teaching Scheme (Hours/Week)				Examination Scheme and Marks						Credits				
Code	Course Name	Theory	Tutorial	Practical	MSE-I		MSE-II	TA	ESE	TW	PR/OR	Total	TH	TUT	TW/PR	Total
MFG201	MOOC Course	3	-	-	-		-	-	100	-	-	100	3	-	-	3
MFG211	Dissertation-I	-		18	-		-	-	-	50	100	150	-	-	9	9
	Total (Semester-III)	3	-	18	-		-	-	100	50	100	250	-	-	9	12
				S	lemes	ter-	IV									
Course			Teach Schei ours/V	_		Exa	amin	ation	Sche	me ar	nd Mark	īS.		Cı	edits	
Code	Course Name	Theory	Tutorial	Practical	MSE-I	MSE-II	TA	FSE		TW	PR/OR	Total	TH	TUT	TW/PR	Total
MFG251	Dissertation II	-	-	24	-	-	-	-	1	.00	100	200	-	-	12	12
	Total (Semester IV)	-	-	24	-	-	-	-	1	.00	100	200	-	-	12	12
				M.Te	ch Se	con	d Ye		_						_	_
	Grand Total	3	-	42	-	-	-	10		50	200	450	3	-	21	24
MSE	- Mid Semester Exam	, ESE	- Enc	d Seme	ster I	Exar	mina	tion	, TH-'	Γheo	ry, OR-	- Oral,	TA-	Tea	cher	

Assessment, TW- Term Work, PR- Practical, Tut- Tutorial

Professional Elective-I

Course
CodeCourse NameMFG121Product life cycle managementMFG122Sensors for Intelligent Manufacturing
and MonitoringMFG123Non Conventional Machining

Professional Elective-II

Course Code	Course Name
MFG161	Intelligent Industrial Systems
MFG162	Mechatronics and Robotics
MFG163	Finite Element Method

Quest for Excellen	ce /								
		athwada University, Aurangabad							
	` •	ce and Technology) cturing Engineering) Semester-I							
Course Code	•	Credits: 3-1-0 (4)							
Course: Rese	earch Methodology & IPR	Mid Semester Examination-I: 15 Marks							
Teaching So	cheme:	Mid Semester Examination-II: 15 Marks							
Theory: 3 H	rs/week	Teacher Assessment: 20 Marks							
Tutorial: 1 H	Ir./week	End Semester Examination: 50 Marks							
	End Semester Examination (Duration): 02 Hrs								
Research Problems and Research Design									
	Meaning of research, types of research, steps in involved in research process,								
criteria of good research, importance of ethics in research, codes and policies for									
Unit-1	Unit-1 research ethics. Selection of research problem, steps involved in defining research								
	problem, need for research design, types of research designs, basic principles of								
	experimental design, formal and in	nformal experimental design.							
		(05 Hrs)							
	Sampling Design								
	Need for sampling, steps in samp	oling design, different types of sampling designs,							
Unit-2	sampling distributions, concept	of central limit and standard error, sources of							
Umt-2	errors, population mean and p	proportion, sample size calculations, tests of							
	measurements for validity, reliabil	lity and practicality.							
		(05 Hrs)							
	Data collection, Processing and	Analysis							
	Methods for collection of data, sel	lection of data collection method, data processing							
	operations, statistics in research,	confidence level, measures of central tendency,							
Unit-3	dispersion, asymmetry and relation	nship.							
	Spearman's and Pearson's coefficient of correlation, simple & multiple regression								
	analysis, analysis of variance (AN	OVA), factor analysis methods.							
		(08 Hrs)							
Unit-4	Hypothesis Test and Report Wr	iting							

				C1 .1 .1	D								
		cept of research hypothesis,	-										
	(z, t	, F and chi-square tests)	, Hypothesis tes	sting of means	and correlation								
	coeff	ficient, Non parametric test	s, significance of	research report v	writing, types of								
	repoi	rts, structure of the researc	ch report, steps in	n report writing,	precautions and								
	ethic	ethics in writing report.											
					(07 Hrs)								
	Intro	oduction to IPR											
	Orig	in and evolution of IPR to it	ts present form an	nd use, Different T	Cools of IPR and								
Unit-5	what	is the nature of these right	ts, Balancing Rig	hts and Responsi	bilities, Societal								
	impl	implications of IPR											
					(05 Hrs)								
	Pate	Patents											
	Conc	cept of inventions/discoverions	es, patents protec	t; benchmarks for	patentability of								
	invei	ntions; Exceptions to pate	ntability; Patenti	ng issues in Bio	technology and								
		outer based inventions, pro	•										
Unit-6		tries around the world, The		_									
Cint-0		nt; term of a patent; rights of											
		_	_		_								
		sing of patent rights; usin	g patent rights i	n the market pia	ice; compulsory								
	licen	se.			(0.577.)								
					(06 Hrs)								
References	Sr.	Title	Author	Publication	Edition								
	No.												
	1	Research Methodology:	C. R. Kothari	New Age	4 th Edition								
		Methods and Techniques	and G. Garg	International,									
				2019									
	2	Research Methodology	R.	PHI Learning,	2 nd Edition								
			Pannerselvam	2014									

Napolean Laxmi

Publications,

& B. Narayan

Research Methodology-

As Theoretical Approach

1st Edition

			2014	
4	Research Methods and	Bernard C.	Pearson	1st Edition
	Statistics	Beins &	Education Inc.,	
		Maureen A.	2012	
		McCarthy		
5	Research Methods	Stuart	CLES	1st Edition
	Handbook	MacDonald &		
		Nicola		
		Headlam		
6	Intellectual Property	Ganguli	Tata	1st Edition
	RightsUnleashing the	Prabuddha	McGrawHill,	
	Knowledge Economy		2001	
7	Intellectual Property	Neeraj Pandey	PHI Learning,	1st Edition
	Rights	and	2014	
		Khushdeep		
		Dharni		
8	Fundamentals of	Ramakrishna	Notion Press,	1st Edition
	Intellectual Property	В	2017	
	Rights			

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)										
	Syllabus of M. Tech. (Manufacturing Engineering) Semester-I									
Course Code	e:MFG102	Credits: 3-0-0 (3)								
Course: Adv	anced Manufacturing Processes	Mid Semester Examination-I: 15 Marks								
Teaching So	cheme:	Mid Semester Examination-II: 15 Marks								
Theory: 3 H	frs/week	Teacher Assessment: 20 Marks								
		End Semester Examination: 50 Marks								
		End Semester Examination (Duration): 02 Hrs								
	Advanced Casting Processes Va	cuum mould casting								
Unit-1	Vacuum mould casting, Evaporative pattern casting, Ceramic shell casting, Counter-gravity flow - pressure casting, Semisolid metal casting, rheocasting.									
	(06Hrs)									
	Advanced Metal Forming Proce	esses								
Unit-2		ning (HERF) process. Electro-magnetic forming, raulic forming, stretch forming, contour roll								
		(06Hrs)								
	Advanced Welding Process									
II		velding, ESW and EGW, Cold pressure welding,								
Unit-3		tomation in welding, Remote welding, Robotic e cracker welding, selecting welding system.								
	, , , , , , , , , , , , , , , , , , ,									
	Course of Transactions of	(06Hrs)								
Unit-4	Surface Treatment									

	Scop	e, Cleaners, Methods of	of cleaning, Surfac	e coating types,	Economics of									
	coati	ng, CVD, PVD, Therma	l spray coating, Ion	implantation, Di	iffusion coating,									
	Dian	nond coating and cladding	g.											
		(0611)												
		(06Hrs)												
	Non-	-conventional Machinin	g Processes											
	Intro	oduction, Need, Process	capabilities, Parar	netric analysis, A	Advantages and									
Unit-5	Disa	dvantages, Applications	of: AJM, WJM, US	SM, EDM, WEDI	M, LBM, ECM,									
	ECG	, CHM, PAM.												
		(06Hrs)												
	High	n-end Manufacturing Pr	rocesses											
		E-manufacturing Nano-technology, Etching techniques: wet etch and dry etch,												
	l E-ma	anufacturing Nano-techn	Ology, Elching leci	nniques: wet etch	n and dry etch. I									
Unit-6		•		-	•									
Unit-6		anufacturing Nano-technography, Micromachining		-	•									
Unit-6		•		-	•									
Unit-6 References		•		-	Printing.									
	Litho	ography, Micromachining	g, HSM, Additive M	anufacturing, 3-D	Printing. (06Hrs)									
	Litho	ography, Micromachining	g, HSM, Additive M	anufacturing, 3-D	Printing. (06Hrs)									
	Sr. No.	ography, Micromachining Title	Author	anufacturing, 3-D Publication	Printing. (06Hrs) Edition									
	Sr. No.	Title Manufacturing	Author Serope Kalpak	Publication Pearson	Printing. (06Hrs) Edition									
	Sr. No.	Title Manufacturing Processes for	Author Serope Kalpak jain and Steven	Publication Pearson Education	Printing. (06Hrs) Edition									
	Sr. No.	Title Manufacturing Processes for Engineering Materials	Author Serope Kalpak jain and Steven R. Schmid	Publication Pearson Education India	Printing. (06Hrs) Edition 5 th Edition									
	Sr. No.	Title Manufacturing Processes for Engineering Materials Manufacturing	Author Serope Kalpak jain and Steven R. Schmid Philip F.	Publication Pearson Education India Wiley Student	Printing. (06Hrs) Edition 5 th Edition									
	Sr. No.	Title Manufacturing Processes for Engineering Materials Manufacturing	Author Serope Kalpak jain and Steven R. Schmid Philip F. Ostwald and	Publication Pearson Education India Wiley Student	Printing. (06Hrs) Edition 5 th Edition									
	Sr. No. 1	Title Manufacturing Processes for Engineering Materials Manufacturing Processes and Systems	Author Serope Kalpak jain and Steven R. Schmid Philip F. Ostwald and Jairo Munoz	Publication Pearson Education India Wiley Student Edition	Printing. (06Hrs) Edition 5 th Edition									

	4	The	3D	Printing	Ben Redwood	3D Hubs	1 st Edition
		Handb Techn		Design	Fileman Schoffer		
		and A	pplicatio	ons	Brian Garrot		

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)											
	Syllabus of M. Tech. (Manufacturing Engineering) Semester-I										
Course Cod	e:MFG103	Credits: 3-0-0 (3)									
Course: Dig	gital Manufacturing	Mid Semester Examination-I: 15 Marks									
Teaching S	cheme:	Mid Semester Examination-II: 15 Marks									
Theory: 3 I	Hrs/week	Teacher Assessment: 20 Marks									
		End Semester Examination: 50 Marks									
		End Semester Examination (Duration): 02 Hrs									
	Digital design: Geometrical desi	gn of curves, Surfaces and solids, Introduction to									
Unit 1	computer aided engineering analysis and optimum design. Consideration of										
	manufacturing and assembly aspects in design										
		(06Hrs)									
	Shape digitization: 3D object sca	anning, Solid reconstruction from point cloud and									
Unit 2	tessellated data, Downstream app	lications									
		(06Hrs)									
	Digital manufacturing: Subtract	ctive manufacturing: Basic architecture, Control									
Unit 3	hardware and software details, To	poling, Sculptured surface machining									
		(06Hrs)									
	Additive Manufacturing: Ba	sics, Hardware details and capabilities of									
Unit 4	commercial systems, Planning of	material addition, Rapid tooling solutions									
		(06Hrs)									
	Computer Aided Process Plann	ning: CAPP and route sheet development, CAPP									
Unit 5		ayout, Computer Aided Production Planning and									
	Control, Algorithms for CAPP										
		(06Hrs)									
		nt Systems: Types, Management Information									
Unit 6		preparation, Shop-floor control, automatic									
	identification systems (sensors,	trackers), Product life cycle management; and									

	Intro	oduction of Industry 4.0			
		·			(06Hrs)
References	Sr.	Title	Author	Publication	Edition
	No.				
	1	Fundamentals of Digital	Z. Zhou, S.	Springer, 2012	1 st Edition
		Manufacturing Science	Xie, D. Chen		
	2	Rapid Prototyping:	C.K. Chua,	John Wiley,	4 th Edition
		Principles and	K.F. Leong,	2010	
		Applications	C.S. Lim		
	3	Mastering CAD CAM	Ibrahim Zeid	McGraw Hill,	2 nd Edition
				2005	
	4	Automation, production	M P Groover	Pearson, 2016	4 th Edition
		systems, and computer-			
		aided manufacturing			
	5	Additive Manufacturing	Ian Gibson ·	Springer, 2015	2 nd Edition
		Technologies	David Rosen,		
			Brent Stucker		
	6	Additive Manufacturing	C. P. Paul, A.	McGraw Hill,	1 st Edition
			N. Jinoop	2021	

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

	(Faculty of Science and Technology)				
	Syllabus of M. Tech. (Manufa	cturing Engineering) Semester-I			
Course Code	e:MFG104	Credits: 3-0-0 (3)			
Course: Qua	lity System& Reliability	Mid Semester Examination-I: 15 Marks			
Engineering.		Mid Semester Examination-II: 15 Marks			
Teaching Scheme:		Teacher Assessment: 20 Marks			
Theory: 3 H	rs/week	End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 02 Hrs			
	Fundamental of Quality				
	Concept of quality, Contribution	of Quality Gurus, Acceptance Sampling Plans for			
TT 1/4	Attribute and Variable, Taguchi	Quality Loss Function and Concept of Robust			
Unit 1	Design, Concept of Six Sigma,	FMEA, QFD, Poka Yoke, ISO 9000 Series of			
	Standard, QS 9000, TQM, Quality Circles.				
		(06Hrs)			
	Statistical Quality Control (SQC)				
	Definition, Benefits and Limitat	tion of SQC, Quality Assurance, Quality Cost,			
Unit 2	Variation in Process & Process Capability, Theory of Control Chart, Uses of				
Omt 2	Control Chart, Control Chart for Variables-X Chart, R Chart and S Chart, Analysis				
	using control charts and reasoning.				
		(06Hrs)			
	Process Control for Attributes				
	Control Chart for Attributes, Control Chart for Proportion or Fraction Defectives -				
	p Chart and np Chart, Control Ch	art for Defects - C and U Charts, State of Control			
Unit 3	and Process Out of Control Ide	entification in Charts, Inferences using control			
	charts. Acceptance Sampling, I	Lot By Lot Sampling, Types - Probability of			
	Acceptance in Single, Double,	Multiple Sampling Techniques, O.C. Curves,			
	Standard Sampling Plans for AQ	L and LTPD, Applications of Standard Sampling			
	Plans.				

						(06Hrs)
	Fund	amentals of	Reliability			
	Conce	ept of Reliabi	ility, Failure d	lata analysis; Failu	re rate; Bath tub	curve; Concept
	of bur	n in period;	Useful life and	d wear out phase of	of a system; Mea	n time to failure
Unit 4	(MTT	F); Mean tin	ne between fa	ailure, (MTBF) an	d mean time to	repair (MTTR);
	Relial	oility in term	ns of Hazard	rate and failure of	density, Condition	onal probability,
	Discre	ete probabilit	y distributions	S.		
						(06Hrs)
	Time	to failure di	stributions a	nd Parametric Re	eliability Models	3
	Introd	uction, Failu	re time estim	ation methods, Th	ne Likelihood Fu	unction, Method
	of Le	ast Squares,	Bayesian App	proach, Generation	n of Failure-Tim	e Data. Various
	distrib	outions like	Exponential	Distribution, R	Rayleigh Distrib	oution, Weibull
Unit 5	Distribution, Normal distribution. Concept of Availability, Dependent Failures,					
	Redundancy and Standby. Parametric reliability models - Approaches based on					
	Historical Data, Operational Life Testing, Burn-In Testing and Accelerated Life					
	Testing.					
					(06Hrs)	
	System Reliability Evaluation					
	Relial	oility black	diagrams, S	eries system, Pa	arallel systems,	Mixed-parallel
Unit 6	systems, Consecutive k-out-of-n: F systems, Reliability of k-out-of-n systems,					
		•		anced systems,	Complex relia	bility systems,
	Redui	ndancy, Impo	rtant measure	s of components.		40.77
	~				<u> </u>	(06Hrs)
References	Sr. No.	Ti	itle	Author	Publication	Edition
	1.	Quality (Control &	B. L. Hanson &	Prentice Hall	2 nd Edition
		Application		P. M. Ghare	of India.	
	2.	Total	Quality	D.H.	Pearson	5 th Edition
		Managemen	nt	Besterfiled	Education	

3.	Statistical (Quality	Grant a	and	Hill	7thEdition
	Control		Leavenworth	1	Publishing	
					Company Ltd	
4.	Statistical (Quality	Montgomery	,	Wiley	8 th Edition
	Control		D.C.		Publication	
5.	Statistical (Quality	R.C. Gupta		Khanna	10 th Edition
	Control				Publishers,	
					Delhi	
6.	An Introduction	n to	C. Ebling		McGraw Hill	12 th Edition
	Reliability	&			Publication	
	Maintainability					
	Engineering					
7.	Reliability engine	ering	Elsayed	A	John Wiley &	2 nd Edition
			Elsayed		Sons Inc.	
					Publication	
8.	Reliability Engine	eering	L.S. Srinath		Affiliated	4 th Edition
					East West	
					Press, New	
					Delhi.	

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)

(Faculty of Science and Technology)				
	Syllabus of M. Tech. (Manufa	cturing Engineering) Semester-I		
Course Code	:: MFG121	Credits: 3-0-0 (3)		
Course: Prod	luct Life Cycle Management	Mid Semester Examination-I: 15 Marks		
Teaching Scheme:		Mid Semester Examination-II: 15 Marks		
Theory: 3 Hrs/week		Teacher Assessment: 20 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
	Introduction, Product Life Cycle	e, Product Management. Teams. Product Master		
Unit 1	plan, Case Study			
		(05Hrs)		
	Industry, Competition, Market	Segments. Product Requirements & Feasibility		
Unit 2	Case Study.			
		(05Hrs)		
	Production and Manufacturing	for PLM. Regulatory Environment, Product		
Unit 3	Warranties. Case Study			
		(08 Hrs)		
	Marketing for Product Manager	s, Post Launch Analysis and Management, Case		
Unit 4	Study			
		(07Hrs)		
	Survey of PLM Tools and S	Software. Matching to needs; Supply Chain		
Unit 5	Management for Product Manag	ers case Study		
		(05 Hrs)		
	Customer Service, End of Prod	duct Life. Product Portfolio Management. Case		
Unit 6	Study			
		(06Hrs)		

References	Sr. No.	Title	Author	Publication	Edition
	1.	Product Lifecycle Management	Martin Elinger and Ralph Stelzer	Springer- Verlag,2009	1 st Edition
	2.	Product Lifecycle Management	M.Grieves	ТМН	2 nd Edition

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code: MFG122 Credits: 3-0-0 (3)

Course: Sensors for Intelligent Mid Semester Examination-I: 15 Marks

Manufacturing and Monitoring Mid Semester Examination-II: 15 Marks

Teaching Scheme: Teacher Assessment: 20 Marks

Lecture: 3 Hrs/week End Semester Examination: 50 Marks

End Semester Examination (Duration): 02 Hrs

Basic Characteristics of Sensors

Unit 1

Introduction and role of sensors and continuous detection in manufacturing automation, sensor terminology, static and dynamic characteristics of transducers, signal processing and signal conditioning, operational amplifiers, filters, protection devices, analog to digital converter, and digital to analog converter.

(06Hrs)

Types of sensors and their Applications in Automation

Unit 2

Principles of different sensors such as electrical, optical, surface acoustic waves, pneumatic, magnetic, vision sensors, electro-optical, inductive, capacitive, resistive, photo sensors, through-beam detection, reflex detection, proximity detection, ultrasonic and microwave sensors for effectiveness in manufacturing automation processes.

(06Hrs)

Advanced Sensors in Manufacturing Systems

Unit 3

Sensors principles and condition monitoring parameters in manufacturing systems, sensors for monitoring force, vibration and noise, laser production, characteristics of lasers, types of laser sensors, bar code sensors, benefits of bar coding, transponder, RFID, electromagnetic identifier, optical encoders, colour sensors, unit colour measurement, colour comparator, colour sensing algorithm, fuzzy logic colour sensor, fuzzy logic for optoelectronic colour sensor in manufacturing automation.

					(06Hrs)		
	Senso	rs for Special Application	s				
	A mu	A multi objective approach for selection of sensors in manufacturing, cryogenic					
	manuf	facturing applications, sea	miconductor abs	orption sensors,	semiconductor		
	tempe	rature detector using phot	oluminescence te	emperature detect	ors using point		
Unit 4	contac	et, sensors in process manuf	facturing plants, r	measurement of hi	igh temperature,		
	robot	control through sensors, o	ther sensors, coll	ection and genera	ation of process		
	signals in decentralized manufacturing system.						
					(06Hrs)		
	Senso	Sensors for Precision Manufacturing Applications					
	Senso	rs for CNC machine tools,	, linear and angul	lar position and v	velocity sensors,		
Tinit 5	autom	atic identification techniqu	es for shop floor	control, bar code	scanners, radio		
Unit 5	freque	ency systems, optical chara	cter and machine	e vision sensors,	smart/intelligent		
	sensor	, integrated sensors, and adaptive control of machine tools.					
	(06Hrs)						
	Role of Sensors and Control Technology in CIM						
	CIM plan, manufacturing enterprise model, design of CIM from viewpoints of						
Unit 6	sensor	rs and control systems, deci	sion support syste	em for CIM, analy	sis of CIM with		
Omt 0	sensors and control system, data acquisition for sensors and control systems in CIM,						
	and de	eveloping CIM strategies w	ith emphasis on so	ensors role in mar	nufacturing.		
					(06Hrs)		
Reference	Sr.	Title	Author	Publication	Edition		
	No.		ration	1 ubileution	Lattion		
		Sensors and Control		McGraw Hill			
	1.	systems in	S. Soloman	International	2 nd Edition		
		Manufacturing	5. Sololliali	EditionsUSA,			
		-		1987			
	2.	Standard Handbook of	D. M.	Chapman and	1 st Edition		
		Industrial Automation	Considiene, G.	Hall, 1975.			

		D. C		
		D. Considine		
	Tool and Manufacturing	Charles Wick,		
3.	Engineers	CMfgE	Tata McGraw-	4 th Edition
3.	HandbookVol. I, II, III	Raymond F	Hill1985	4 Edition
	and IV	Veilleux		
	In manage Management		Marcel	
4.	In-process Measurement	S. D. Murphy	Dekker, 1983.	1 st Edition
	and Control			
	Applying Machine			
5.	Vision Sensor	N. Zuech	Jon S. Wilson	1 st Edition
	Technology Handbook			
		Thomas		
_	Mechanical	Beckwith		cth True
6.	measurement	Roy	Pearson	6 th Edition
		Marangoni		
		Ian Sinclair		4
7.	Sensors and Transducers		Newnes	3 rd Edition

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)

(Faculty of Science and Technology)				
		cturing Engineering) Semester-I		
Course Code	e: MFG123	Credits: 3-0-0 (3)		
Course: Non	Conventional Machining	Mid Semester Examination-I: 15 Marks		
Teaching So	cheme:	Mid Semester Examination-II: 15 Marks		
Lecture: 3 H	Hrs/week	Teacher Assessment: 20 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
	Introduction			
	Needs for nontraditional machi	ning processes, classification and comparative		
Unit 1	analysis of AJM, WJM, Ultrase	onic Machining ECM, EDM, Laser Machining		
	Processes.			
	(06Hrs)			
	Abrasive jet machining			
TI 0	Fundamental principle, application process parameters, MRR models. Water jet			
Unit 2	machining: Fundamental principle, application process parameters.			
		(06Hrs)		
	Chemical machining			
	Principle of operation, etch ants and mask ants, photochemical process,			
Unit 3	equipment, applications. Process principle Dynamics of ECM Process, Analysis of			
	material removal in Electrochemical machining, tool design, applications.			
		(06Hrs)		
	Ultrasonic machining			
	Physical principles Physical principles of USM, Process parameters, Transducers			
Unit 4	types materials and design, Horn	design: Shaws model of MRR, other applications		
	of Ultrasonic machining.			
		(06Hrs)		
Unit 5	Electrical discharge machining			
<u> </u>				

	Ope	Operating principles of EDM, Effects of Dielectric fluids, Electrode materials				
	,pow	power generators, process parameters and their effects, flashing, wire EDM				
	proc	process, applications. Laser Beam Machining.				
					(06Hrs)	
	Lasi	ng process				
***	Туре	es of lasers (Gas and se	olid state), lasing med	liums, laser mate	rial processing-	
Unit 6	cutti	ng, drilling, surface trea	tment, special applicat	tions.		
					(06Hrs)	
References	Sr.	TT. 1		- · · ·	7 7.11.1	
	No.	Title	Author	Publication	Edition	
	1	Modern Machining	P.C. Pandey &	Tata McGraw	1 St T 1''	
	1.	Processes	H.S. Shan	Hill	1 st Edition	
	_	Advanced	77'' T7 T '	Allied	and East.	
	2. Machining Processes Vijay K.	Vijay K.Jain	Publishers	2 nd Edition		
		Non traditional	G.F. Benedict,			
	3.	Manufacturing	3. Manufacturing	Marcel Dekker Inc	CRC Press	1 st Edition
		Processes	Warter Dekker Inc			
		Advanced Methods	McGeough, Joseph	Chapman and		
	4.	of Machining	A	Hall, London	1 st Edition	
		or iviacinning	71	1988		
				Institute of		
	5.	New Technology	A. Bhattacharya	Engineers,	1 st Edition	
				India,1973		
		Material &	Paul De Garmo,	Prentice Hall		
	6.	Processes in	J.T. Black and	College Div	8 th Edition	
		Manufacturing	Ronald A. Kohser	Conege Div		
	7.	Advanced	Hassan Abdel-	Tata McGraw	1 st Edition	
	/.	Machining Processes	Gawad El-Hofy	Hill	1 Latiton	

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science and Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code:MFG111 Credits: 0-0-1 (1)

Course: Lab-I (Data Analytics Lab: -R Credits: 1

Programming) Practical/Oral Exam: -NA

Teaching Scheme: Teacher's Assessment/Term Work: 25 Marks

Practical: 2 Hrs /week

Course Objectives:

1. Understand the R Programming Language.

2. Exposure on visualizing data science problems.

3. Understand the classification and Regression Model.

Contents

No of Particles to be performed not less than 10

- 1. Introduction to R Programming and Study of basic Syntax in R
- 2. R as a Calculator application:
 - a. Using with and without R objects on console
 - b. Using mathematical functions on console
 - c. Write an R script, to create R objects for calculator application and save in a Specified location in disk.
- 3. Descriptive Statistics In R
 - a. Write an R script to find basic descriptive statistics using summary, str, quartile function
 - b. Write an R script to find subset of dataset by using subset (), aggregate () functions on sample dataset
- 4. Reading and Writing Different Types of Datasets
 - a. Reading different types of data sets (.txt, .csv) from Web and disk and writing in file in specific disk location.

- b. Reading Excel data sheet in R.
- c. Reading XML dataset in R.
- 5. Visualizations
 - a. Find the data distributions using box and scatter plot.
 - b. Find the outliers using plot.
 - c. Plot the histogram, bar chart and pie chart on sample data

Study and implementation of various control structures in R and calculate mean mode median for a dataset

- 6. Correlation and Covariance
 - a. Find the correlation matrix.
 - b. Find the outliers using plot.
 - c. Plot the correlation plot on dataset and visualize giving an overview of relationships among data.

7. Regression Model

Import a data from web storage. Name the dataset and now do Linear/Logistic Regression to find out relation between variables that are affecting the admission of a student in an institute based on his or her entrance score

- 8. Classification Model
 - a. Install relevant package for classification.
 - b. Choose classifier for classification problem.
 - c. Evaluate the performance of classifier.
- 9. Clustering Model
 - a. Clustering algorithms for unsupervised classification.
 - b. Plot the cluster data using R visualizations.
- 10. Mini Project

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code:MFG112 Credits: 0-0-1 (1)

Course: Lab-II:-Master CAM Term work: 25 Marks

Teaching Scheme:

Practical: 02 Hr/week

Course Content:

The lab work consists of the assignments/experiments related to

Lathe:

2D Geometric Modelling, File conversions (Data conversions),tool paths for Turning, Facing, Grove cutting, drilling, taping and tool paths verification and CNC Part Program generation.

Mill:

2D and 3D Geometric Modelling, Tool paths for 2D machining like countering, pocketing, Island pocketing, Drilling, Plane milling,

Surface Modelling 3D surfaces (Coons, Ruled, Revolved, Tabulated etc), Tool paths for 3D machining, Surface machining, Verification and CNC part program generation.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code:MFG113 Credits: 0-0-1 (1)

Course : Lab-III[MATLAB] Term work: 25 Marks

Teaching Scheme:

Practical: 02 Hr/week

Course Content:

The lab work consists of the assignments/experiments related to

Introduction to MATLAB Software

- 1. MATLAB window: Command window, Workspace, Command history, setting directory, Working with the MATLAB user interface
- 2. Basic commands, Assigning variables, Operations with variables
- 3. Data Types: Character and string, Arrays and vectors, Column vectors, Row vectors
- 4. Basic Mathematics: BODMAS Rules, Arithmetic operations, Operators and special characters, Mathematical and logical operators, Solving arithmetic equations
- 5. Operations on matrix: Crating rows and columns Matrix, Matrix operations, Finding transpose, determinant and inverse, Solving matrix
- 6. Other operations: Trigonometric functions, Complex numbers, fractions, Real numbers, Complex numbers
- 7. Plots: Plotting vector and matrix data, Plot labelling, curve labelling and editing, 2D plots: Basic Plotting Functions, Creating a Plot, Plotting Multiple Data Sets in One Graph, Specifying Line Styles and Colours, Graphing Imaginary and Complex Data, Figure Windows, Displaying Multiple Plots in One Figure, Controlling the Axes

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering) Semester-I

Course Code: MFG114 Credits: 0-0-2 (2)

Course: Seminar Pr-Oral: 50 Marks

Teaching Scheme:

Practical: 04 Hr/week

Objective:

To train students in identification, analysis, and prepare report of it.

The course content of seminar shall be from emerging / thrust areas, topics of current relevance having research aspects or shall be based on industrial visits.

Students can also choose live problems from manufacturing organizations as their seminar topic.

At the end of the semester, the students should submit a report and appear for End Semester **Examination.**

End Semester Examination will be assessed by Examiner appointed by University and internal guide. Seminar will have end Semester examination of 50 marks.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

	(Faculty of Science & Technology)				
	Syllabus of M. Tech. (Manufa	acturing Engineering) Semester-II			
Course Code	:MFG141	Credits: 3-1-0 (4)			
Course: Adv	anced Optimization Techniques	Mid Semester Examination-I: 15 Marks			
Teaching Sc	heme:	Mid Semester Examination-II: 15 Marks			
Lecture: 3 H	Irs/week	Teacher Assessment: 20 Marks			
Tutorial: 1 H	r/week	End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 02 Hrs			
Introduction					
	Optimal Problem Formulation, e	engineering optimizations Problems, Optimization			
	Algorithms				
Unit1	Single Variable Optimization Algorithms: Optimality criteria, bracketing me				
	region elimination methods, point estimation methods, gradient base methods, root				
	finding using optimization techniques.				
		(06Hrs)			
	Multivariable optimization Alg	orithms			
Unit 2	Optimality criteria, unidirectional search, direct search methods, gradient based				
Omt 2	methods.				
		(06Hrs)			
	Constrained Optimization Algo	orithms			
	Kuhn-Tucker conditions, transformation methods, Sensitivity Analysis, direct				
Unit 3	search for constrained minimization, linearized search techniques, feasible direction				
	method, generalized reduced gradient method, and gradient projection method.				
		(06Hrs)			
	Fuzzy Logic				
Unit 4	Introduction to Fuzzy logic: Fuz	zzy sets and membership functions, operations on			
omt 4	fuzzy sets, fuzzy relations, ru	ules, propositions, implications and inferences,			
	defuzzification techniques, fuzzy	logic controller design, some applications of fuzzy			

	logic.				(06Hrs)	
	Speci	Special Optimization Algorithms				
	_	er programming, geomet		g, Genetic Algor	ithm, Simulated	
Unit 5	annealing, Global optimization, ant colony optimization.					
	(06Н					
	Opti	mization in Operations R	esearch			
T T 14 6	Linea	ar Programming Problems	, simplex method	, artificial variable	e technique, dual	
Unit 6	phase	e method, sensitivity analys	sis.			
					(06Hrs)	
References	Sr.	Title	Author	Publication	Edition	
	No.	Title	Author	1 ublication	Edition	
	1.	Optimization for	Deb	PHI, New	2 nd Edition	
		Engineering Design	Kalyanmoy	Delhi		
	2.	Engineering	Rao S.S.	John Wiley,	3 rd Edition	
		Optimization		New Delhi		
	3.	Multi-Objective	Deb	John Wiley,	1 st Edition	
		Algorithms using	Kalyanmoy	New Delhi.		
		Evolutionay Algorithms				
	4.	Principles of Optimum	Paplambross P.	Cambridge	2 nd Edition	
		Design: Modelling and	Y. and Wilde	University		
		Computation	D. J.	Press, UK		
	5.	Optimization concepts	Ashok D	Cambridge	3 rd Edition	
		and Applications in	Belegundu	University		
		Engineering	Tirupathi R.	Press		
			Chandupatla			

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

	Syllabus of M. Tech. (Manufacturing Engineering) Semester-II			
Course Code	<u> </u>	Credits: 3-0-0 (3)		
	en Manufacturing	Mid Semester Examination-I: 15 Marks		
Teaching Sc	_	Mid Semester Examination-II: 15 Marks		
Lecture: 3 Hrs/week		Teacher Assessment: 20 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
	Introduction to green process	es Environmental effects of design -selection of		
		Eco design - Environmental damage alternate		
Unit 1		nission less manufacturing- Industrial Ecology –		
		ion of toxic emission – design for recycle.		
	•	(06Hrs)		
Primary and Secondary Pollutants, Automobile Pollutants, Industrial Po				
	Ambient air quality Standards, Metrological aspects of air Pollution from			
	industry point of view.			
	Frequency and Sound Levels, Units of Noise based power radio, contours of			
Unit 2	Loudness. Effect of huma	n, Environment, and properties, Natural and		
	Anthrogenic Noise Sources, M	Iasking of sound, Types, Kinetics, Sources of noise,		
	Effects of noise-Occupational	Effects of noise-Occupational Health hazards, thermal Comforts.		
		(06Hrs)		
	Principles of sustainable oper	rations - Life cycle assessment manufacturing and		
	service activities - Influence of	of product design on operations - Process analysis -		
TI 1/2	Capacity management - Qual	ity management -Inventory management - Just-In-		
Unit 3	Time systems - Resource effi	cient design - Consumerism and sustainable well-		
	being.			
		(06Hrs)		
Unit 4	Green supply Chains – Need	for Green Supply Chains – Implications of modern		
	1			

	supply chain management – The supply chain strategy – Ingredients of green supply chain strategy. Evaluating the impact of GSCM activities on sustainability – Economic, Environmental and social impacts of GSCM Stages of GSCM - performance measurement. (06Hrs)					
Unit 5	polici absol Mont	Indian Constitution and Environmental Protection – National Environmental policies – Precautionary Principle and Polluter Pays Principle – Concept of absolute liability – multilateral environmental agreements and Protocols – Montreal Protocol, Kyoto agreement, Rio declaration – Environmental Protection Act, Water (P&CP) Act, Air (P&CP) Act.				
Unit 6	Recyclable materials, bioplastics, tapping into renewable energy sources, embracing digital manufacturing, Application of AI in manufacturing, AR and VR (Augmented reality and virtual reality), Basics of Environmental accounting national, global and corporate. (06Hrs)					
References	Sr. No.	Title	Author	Publication	Edition	
	1.	Industrial Ecology	Gradel.T.E. and B.R. Allenby	Prentice Hall -2010		
	2.	World Commission on Environment and Development (WCED), Our Common Future		Oxford University Press, 2005	1 st Edition	
	3.	Costing the Earth: The Challenge for	Frances Cairncross	Harvard Business		

	Governments, the		School	
	Opportunities for		Press –1993	
	Business			
4.	Environmental Pollution Control Engineering	Rao CS	Wiley Eastern Ltd., New Delhi, 2006.	2 nd Edition
5.	Industrial noise control, Fundamentals and applications	Lewis H Bell and Douglas H Bell	Marcel Decker, 1994.	2 nd Edition
6.	Environmental Accounting: Energy and Environmental Decision Making	Odum, H.T.	Wiley, U.S.A.	
7.	Green Supply Chain Management	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis, Dimitris Folinas		
8.	Environmental Policy New Directions for the Twenty-First Century	Norman J. Vig - Carleton College, Minnesota, Michael E. Kraft - University of Wisconsin, Green Bay, USA, Barry G. Rabe - University of Michigan, USA	Sage Publication	11 th Edition

Dr. Babasaheb A	mbedkar Marathw	ada University,	Aurangabad
-----------------	-----------------	-----------------	------------

(Faculty of Science & Technology)						
	Syllabus of M. Tech. (Manufacturing Engineering), Semester-II					
Course Code	:MFG143	Credits: 3-0-0 (3)				
Course Title:	Characterization of	Mid Semester Examination-I: 15 Marks				
Materials		Mid Semester Examination-II: 15 Marks				
Teaching Sch	neme:	Teacher Assessment: 20 Marks				
Theory: 3 H	Irs./week	End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 02 Hrs				
	1. To study basic description	on of a range of common characterization techniques				
Course	and analysis of results.					
Objectives	2. To provide a thorough in	ntroduction to the principles of diffraction.				
	3. To understand the basics	s of surface texture and techniques to analyze texture.				
	Importance of characterization	tion studies in materials science - Applications in				
	industry and research, review of materials science fundamentals – crystal structures,					
Unit 1	defects in crystal structure, structure and property correlation, structure sensitive/					
Omt 1	insensitive properties. Introd	duction to Elemental composition techniques - AAS,				
	AES.					
	(06Hrs)					
	Principles of image formation – brightness, contrast, resolution, depth of field,					
	focus, aberrations (spherical, chromatic and astigmatism), remedial measures for					
Unit 2	aberrations, levels of characterization (macro, meso and micro).					
	OM, PLOM.					
		(04Hrs)				
	SEM – working principle an	d construction, advantages/ disadvantages as compared				
	to OM, types of electron gun feature and comparison, beam-sample interaction,					
Unit 3	interaction volume concept, Imaging modes (secondary and backscattered), effect of					
	spot size, apertures, accelerating voltage on SEM image.					
	(08Hrs)					

	Elem	nental analysis technique	s using SEM – WDS, EI	OS, EPMA, XRF.	
Unit 4	Introduction to Surface analysis methods – AES, XPS.				
					(08Hrs)
Unit 5	XRD – generation of X-rays, characteristic X-ray spectrum, Bragg's Law, diffraction methods - powder method, applications in crystal structure, macrotexture and residual stress determination. (04Hrs)				
	Ther	mal analysis techniqu	ies – DSC, DMA,	DTA and TGA	A. Chemical
Unit 6	chara	acterization – FTIR and I	Raman spectroscopy.		
					(06Hrs)
References	Sr.	Title	Author	Publication	Edition
	1.	Introduction to Materials Characterization	Yang Leng	John Wiley & Sons	1 st Edition
	2.	Metallography: Principle and practice	George F, Vander Voort	Mc Graw Hill Inc.	4 th Edition
	3.	Fundamental of Light Microscopy and Electronic Imaging	Douglas B. Murphy, Michael W. Davidson	John Wiley & Sons	2 nd Edition
	4.	Elements of X-ray Diffraction	B. D. Cullity and S. R. Stock	Prentice Hall, Inc.	1 st Edition
	5.	ASM Handbook Volume 10 Materials Characterization	R. E. Whan (Editor)	ASM international, USA	2019 Edition
	6.	Differential Scanning Calorimetry	G. Hohne, W.F. Hemminger	Springer	1 st Edition

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

(Faculty of Science & Technology)				
Syllabus of M. Tech. (Manufacturing Engineering), Semester-II				
Course Code:MFG144		Credits: 3-0-0 (3)		
Course: Theory of Metal Forming		Mid Semester Examination-I: 15 Marks		
Teaching Sc	heme:	Mid Semester Examination-II: 15 Marks		
Lecture: 3 Hrs/week		Teacher Assessment: 20 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs		
	Stress-strain relations in elastic	and plastic deformation, Yield criterion for ductile		
	material. Relationship between	tensile and shear yield stresses. Introduction and		
Unit 1	Fundamentals of metal forming,	Mechanics of metal working, Forming equipments,		
	Presses- (Mechanical and Hydra	ulic)		
		(06Hrs)		
	Theory of Plasticity: Mechanic	cal behavior of Metals and alloys under plastic		
	deformation, Strain hardening hypothesis, Flow stress and flow curves, Material			
T:4 2	incompressibility. Introduction of super plastic metal forming, super plastic metal			
Unit 2	forming working principle, super plastic metal forming types, it's advantages and			
	applications.			
		(06Hrs)		
	Formulation of plastic deformation	on problem, Application of theory of plasticity and		
	solving metal forming problems using slab method, Upper and lower bound			
Unit 3	methods, slip line field theory, Effect of temperature and strain rate in metal			
	working.			
		(06Hrs)		
	Analysis of a) Rolling- Determine	ination of Rolling Pressure, Roll separating Force,		
I Init 1	Driving torque and power, Power	er loss in bearing, Bending- Determination of work		
Unit 4	load, Estimation of spring back.	(Derivation and Numerical)		
		(06Hrs)		

	b) Fo	b) Forging-Forging of Strip and Disc c) Extrusion-Determination of Work load					
Unit 5	from	from stress analysis and Energy consideration, Determination of Power Loss.					
Omt 3	(Deri	vation and Numerical)					
					(06Hrs)		
	Analy	ysis of metal forming pro	cess -Wire Drawi	ng Sheet metal fo	, ,		
Unit 6		Deep Drawing, Stretch for	_		nent Analysis of		
	Meta	l Forming Processes. (Der	rivation and Nume	rical)			
					(06Hrs)		
References	Sr.	Title	Author	Publication	Edition		
	No.	Title	Author	Publication	Edition		
	1.	Manufacturing Science	Ghosh and	East-West	2 nd Edition		
			Mallik	Private Limited			
	2.	Principal of Industrial	G. W. Rowe	CBS Publisher,	2 nd Edition		
		Metal working		2005			
		Processes					
	3.	Mechanical Metallurgy	George E.	McGraw Hill	3 rd Edition		
			Dieter	Higher			
				Education			
	4.	Metal	W F Hosford	Cambridge	4 th Edition		
		Formingmechanics and	and R M	University			
		Metallurgy	Caddel	Press, 2011			
	5.	Metal Forming:	Hill, R	Claredon Press,	1 st Edition		
		Processes and Analysis		1998			

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech (Manufacturing Engineering), Semester- II						
Course Code:N	MFG161	Credits: 3-0-0 (3)				
Course Title: I	ntelligent Industrial Systems	Mid Semester Examination-I: 15 Marks				
(Professional I	Elective-II)	Mid Semester Examination-II: 15 Marks				
Teaching Sch	eme:	Teacher Assessment: 20 Marks				
Theory: 3 Hr	s./week	End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 02 Hrs				
Course	1. Understand the importance of	of Artificial Intelligence in Manufacturing systems.				
Objectives	2. Understand the importance	of Knowledge Based Systems in Manufacturing				
	systems.					
	3. Developing the capability of	of applying Intelligent Systems in Manufacturing				
	Systems.					
	4. Assess the performance of Manufacturing Systems					
	5. Develop a systematic a	pproach for design and implementation of				
	Manufacturing Systems.					
	6. Suggest new procedures to improve the productivity of existing manufacturing					
	systems.					
	Computer Integrated Manufactu	rring Systems Structure and functional areas of				
	CIM system – CAD, CAPP, CAM, CAQC, ASRS. Advantages of CIM.					
	Manufacturing Communication	Systems – MAP/TOP, OSI Model, Data				
Unit 1	Redundancy, Top- down and	Bottom-up Approach, Volume of Information.				
	Intelligent Manufacturing Syste	em Components, System Architecture and Data				
	Flow, System Operation.					
		(06Hrs)				
	Components of Knowledge Bas	sed Systems – Basic Components of Knowledge				
Unit 2	Based Systems, Knowledge	Representation, Comparison of Knowledge				
	Representation Schemes, Interference Engine, Knowledge Acquisition, Clustering.					

	Applications in Manufacturing Systems.					
	(06Hrs)					
	Mach	ine Learning - Concept	of Artificial Int	elligence, Conce	eptual Learning,	
	Artifi	cial Neural Networks - I	Biological Neuro	on, Artificial Ne	euron, Types of	
Unit 3	Neura	al Networks, Applications in	Manufacturing.			
					(06Hrs)	
	Autor	mated Process Planning –	Variant Approac	ch, Generative A	pproach, Expert	
	Syste	ms for Process Planning, F	Feature Recognit	ion, Phases of P	rocess planning.	
	Know	vledge Based System for l	Equipment Selec	ction (KBSES) -	- Manufacturing	
Unit 4	syster	m design. Equipment Sel	lection Problem	, Modeling the	Manufacturing	
	Equip	oment Selection Problem, P	roblem Solving	approach in KBS	ES, Structure of	
	the K	RSES.				
					(06Hrs)	
	Group Technology: Models and Algorithms Visual Method, Coding Method,					
	Cluster Analysis Method, Matrix Formation - Similarity Coefficient Method,					
Unit 5	Sorting-based Algorithms, Bond Energy Algorithm, Cost Based method, Cluster					
	Identi	ification Method, Extended	CI Method.			
	(06Hı	rs)				
		vledge Based Group Tec				
Unit 6		facturing System. Structure	· ·	•	roup technology	
	(KBST) — Data Base, Knowledge Base, Clustering Algorithm.					
	(06Hrs)					
References	Sr.	Title	Author	Publication	Edition	
	No.					
	1.	Intelligent	Andrew	Prentice Hall.		
		Manufacturing Systems	Kusiak		th	
	2.	Artificial Neural	Yagna	Prentice Hall.	12 th Edition	

	Networks	Narayana		
3.	Automation, Production Systems and CIM	Groover M.P.	Prentice Hall.	3 rd Edition
4.	Design and	Hamid R	Prentice Hall.	1 st Edition
	Implementation of	Parsaei and		
	Intelligent	Mohammad		
	Manufacturing Systems	Jamshidi		
5.	Introduction to Artificial	Jacek M.	JAICO	1 st Edition
	Neural Systems	Zurada	Publishing	
			House Ed	

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech (Manufacturing Engineering), Semester- II					
Course Code	:MFG162 Credits: 3-0-0 (3)				
Course: Mec	Course: Mechatronics and Mid Semester Examination-I: 15 Marks				
Robotics(Pro	ofessional Elective-II)	Mid Semester Examination-II: 15 Marks			
Teaching Sc	heme:	Teacher Assessment: 20 Marks			
Theory: 3 H	rs/week	End Semester Examination: 50 Marks			
Tutorial: 0 H	r/week	End Semester Examination (Duration): 02Hrs			
	Introduction to Mechatronic	s: Definition and Approach of Mechatronics,			
	Measurement and Control Sy	stems, Sensors and Transducers: Performance			
	Terminology, Displacement, Vel	locity, Position, Proximity, Force, Fluid Pressure,			
II:4 1	Liquid Level, Temperature, Light Sensors, Procedure for Selection; Microprocessor				
Unit 1	Based Controllers and Mechatronics Approach; Signal Conditioning: Op Amp,				
	Protection, Digital Signals, Multiplexes and Digital Signal Processing, Pulse				
	Modulation.				
		(06Hrs)			
	Drives and Controllers: Actuati	on Systems, Direction control valves, Pressure and			
	Process Control Valve, Pneumatic and Hydraulic Systems; Electrical Actuation				
Unit 2	System: Mechanical Switches, Solid State Switches, Solenoid, DC/AC Motors,				
Unit 2	Stepper Motors; Microprocessor and its Application: Architecture of Microprocessor				
	8085, Instruction Set, Embedding a Microprocessor into a Mechatronics System.				
		(06Hrs)			
	Introduction to robotics and Kinematics: Robotics configuration, Need and				
Unit 3	Classifications of Robots, Characteristics of robot, Robot Peripherals, Sensors,				
Cint 3	Robot Kinematics, Homogeneous	s Transformations, Forward & Inverse Kinematics.			
		(06Hrs)			
Unit 4	Robot Control Units: Motion	Controls. Problems of Dynamics, Differential			

	Relationships, Motion Trajectories, , Dynamics of Robot Control of Single &								
	Multiple Link Robot, Static Force Analysis.								
		(06Hrs)							
	Robot	Programming And	Machine Vision:	Robot Programm	ing: Different				
TT .*4 F	Langu	ages Expert Systems, T	Feach and Pender	nt Method, Image	Processing &				
Unit 5	Analy	sis, Application of Artific	ial Intelligence, V	oice Communication	1.				
					(06Hrs)				
	Robot	t Applications in M	Ianufacturing:	Material Transfer	& Machine				
	Loadii	ng/Unloading, Processing	g Operations, Ins	pection, Automatio	n, Robot Cell				
Unit 6	Design	n, Control, Recent Deve	elopments and Sp	ecial Applications,	Micro & Bio				
	Robot	ics.							
					(06Hrs)				
References	Sr.	Title	Author	Publication	Edition				
	No.	Title	Author	Publication	Euldon				
	_	1. Mechatronics	Bolton, W.	Tata Mcgraw- Hill, New Delhi	1 st Edition				
	1.								
		Introduction to	Shetty, D. and	Tata McGraw	1 st Edition				
	2.	Mechatronics	Richard, A.K.	Hill, 2003					
		Mechatronics System	Mahalik, N.	PWS Pub.					
	3.	Design		Boston. 1997	2 nd Edition				
		Principles, Concept							
	4.	and Applications:	Bolton, W.	Tata McGraw.	1 st Edition				
	٠,	Mechatronics		2003	1 Edition				
		1,100nationies	Merzouki R.,						
		Mechatronics: A	Samantaray A.						
	5.	Multidisciplinary	K., Pathak	Prentice Hall.	4 th Edition				
		Approach	P.M.,	2009					
			Bouamama B.						
	1								

			Ould		
	6.	Intelligent Mechatronic Systems: Modeling, Control and Diagnosis	Springer 2013 Mechatronics, Intl. J	Pergamon Press	
	7.	Robotics: Fundamental concepts and analysis	A. Ghosal	Oxford university press, 2006	1 st Edition
	8.	Industrial Robotics	M P Groover	Pearson Edu, 2008	1 st Edition
	9.	Robotics and Control	R K Mittal & I J Nagrath	Tata McGraw- Hill ,2003	
	10.	Robotics: Control, sensing, vision and intelligence	K Fu, R Gonzalez, and C S G Lee	McGraw Hill, 1987	2 nd Edition
	11.	Robot Dynamics & Control	Mark W. Spong and M. Vidyasagar	John Wiley & Sons (ASIA) Pte Ltd, 1989	1 st Edition
	12.	Automation, Production systems and Computer Integrated Manufacturing	M P Groover	Prentice Hall India, 1987	4 th Edition

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

(Faculty of Science & Technology)							
	Syllabus of M. Tech (Manufacturing Engineering), Semester- II						
Course Code	:MFG163	Credits:3-0-0 (3)					
Course: Finit	e Element Method(Professional	Mid Semester Examination-I: 15 Marks					
Elective-II)		Mid Semester Examination-II: 15 Marks					
Teaching Sc	heme:	Teacher Assessment: 20 Marks					
Lecture: 3 H	Irs/week	End Semester Examination: 50 Marks					
		End Semester Examination (Duration): 02Hrs					
	Introduction to Finite Difference	Method and Finite Element Method, Advantages					
	and disadvantages, Mathematical	formulation of FEM, Variational (Rayleigh-Ritz)					
Unit 1	Method, Potential Energy Method	thod, Weighted Residual (Galerkin) Approach,					
	Weighted Residual (Least Square	es) Approach.					
		(06Hrs)					
	Shape functions, Natural co-ordinate system, Element and global stiffness matrix,						
Unit 2	Boundary conditions Errors, Con-	vergence and patch test, Higher order elements.					
		(06Hrs)					
	Applications: problems of struct	ural mechanics and solid mechanics, Plane stress					
Unit 3	and plane strain problem, 3-D problems. Torsion, bending of plates and shells,						
		(06Hrs)					
Unit 4	FE formulation for vibration, hear	t transfer, and fluid flow problems.					
		(06Hrs)					
	Application of the method to ma	aterially non-linear bending of straight beams and					
Unit 5	elastic plates problems, associat	ted flowcharts and computer programming, Data					
	preparation and mesh generation	through computer graphics, Numerical techniques,					
	3D problems.						
		(06Hrs)					

		_
	nit	6
U	ш	v

FEM an essential components of CAD, Use of commercial FEM packages, ANSYS Software and MATLAB Programs for Finite Element Analysis, Comparison with conventional analysis.

(06Hrs)

		(001118)			
References	Sr. Title		Author	Publication	Edition
	No.				
	1.	Finite Element Analysis	C.S.Krishnamo	Tata McGraw-Hill	1 st Edition
			orty		
	2.	Computer Analysis of	D. Maity	I.K. International	3 rd Edition
		Framed Structures		Pvt. Ltd. New	
				Delhi	
	3.	Fundamentals of Finite	David V.	McGraw Hill	3 rd Edition
		Element Analysis,	Hutton,		
	4.	Introduction to the	Erik G.	Wiley, 2005	1 st Edition
		Finite Element Method:	Thompson		
		Theory, Programming			
		and Applications			
	5.	Introduction to Finite	John Wiley H.	NewYork,	1 st Edition
		Element Analysis -	C. Martin and	McGraw-Hill	
		Theory and Application	G. F. Carey		
	6.	Finite Element	K. J.Bathe,	Prentice-Hall of	2 nd Edition
		Procedures,		India, New Delhi,	
				India	
	7.	Matrix and Finite	M.	Ane Books pvt	2 nd Edition
		Element Analysis of	Mukhopadhyay	Ltd.	
		Structure			

8.	The Finite	Element	Zienkiewic	cz	McGraw	Hill,	5 th Edition
	Method in	Structural	and	Y.K.	London		
	and Soild Med	chanics,	Cheung,				
9.	A History o	f Modern	P.E. Ceruz	zi,	The MI	Press,	1 st Edition
	Computing,				Cambridg	e, MA,	
					1998.		
10.	Finite Elemen	t Analysis	Wiley	S.S.	Elsevier		1 st Edition
			Rao,		Butterwor	th-	
					Heineman	n	

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech (Manufacturing Engineering), Semester- II

Course Code:MFG151 Credits: 0-0-1 (1)

Course: Lab IV: Advanced Optimization Term-work: 25 Marks

Techniques

Teaching Scheme:

Practical: 2 Hrs/week

Cicuits. 0 0 1 (1)

The lab work consists of the assignments/experiments related to

The lab experiments shall be conducted to solve the numerical on

- LPP using software LINGO/LINDO/MS Excel/PYTHON
- Single variable and multi variables with constrained and unconstrained optimization using MATLAB/PYTHON
- Non-traditional optimization with MATLAB/PYTHON

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering), Semester-II

Course Code: MFG152 Credits: 0-0-1 (1)

Course: LAB-V Characterization of Materials | Term Work: 25 Marks

Teaching Scheme:

Practical: 2 Hr./week

Course Content:

The lab work consists of the assignments/experiments related to

- 1. Sample preparation techniques for microscopy.
- 2. Interaction volume concept of electron beam.
- 3. Case study on microstructure analysis by OM, SEM and TEM.
- 4. Case study on elemental analysis by XRD, WDS and EDS.
- 5. Case study on surface analysis.
- 6. FTIR and DSC analysis of polymers.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of Syllabus of M. Tech. (Manufacturing Engineering), Semester-II

Course Code:MFG153 Credits: 0-0-1 (1)

Course: Lab-VI Term work: 25 Marks

[Advanced MATLAB Programming]

Teaching Scheme:

Practical: 02 Hr/week

Course Content:

The lab work consists of the assignments/experiments related to

Programming in MATLAB Software.

- 1. GUI Design: Introduction of Graphical User Interface, GUI Function Property, GUI Component Design, GUI Container, Writing the code of GUI Call back.
- 2. MATLAB Programming: Automating commands with scripts, Writing programs with logic and flow control, Writing functions, Control statement Programming, Conditional Statement Programming, Examples.
- 3. Loops and Conditional Statements: Control Flow Conditional Control if, else, switch Loop Control for, while, continue, break Program Termination return
- 4. Functions: Writing user defined functions, Built in Function, Function calling, Return Value, Types of Functions, Global Variables
- 5. MATLAB Toolbox: Optimization Toolbox, Fuzzy logic Toolbox, Global Optimization Toolbox, Neural Network Toolbox, Statistics and Machine Learning Tool Box.
- 6. Introduction to Simulink

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering), Semester-II

Course Code:MFG154 Credits: 0-0-2 (2)

Course: Mini Project Practical /Oral: 50 Marks

Teaching Scheme:

Practical: 4 Hr./week

Course Content:

A group of students or individual students are required to choose a topic of interest. To train students in identification, analysis, finding solutions and execution of live engineering and managerial problems. The course content of the mini project shall be from emerging / thrust areas, topics of current relevance having research aspects or shall be based on industrial visits.

Students can also choose live problems from manufacturing organizations as their mini project.

At the end of the semester, the students should submit a report and appear for End Semester Examination.

End Semester Examination will be assessed by Examiner appointed by University and internal guide. Mini Project will have end Semester examination of 50 marks.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering), Semester-III

Course Code:MFG201 Credits:3-0-0 (3)

Course: MOOC Course End Semester Exam: 100Marks

Teaching Scheme:

Online Course

(Minimum12Weeks)

It is mandatory for the student to complete one MOOC course related to the program of study. The student will have to complete the MOOC course which will be available on the SWAYAM portal (Free online education portal). Registered MOOC courses should not have similar or overlapping content to that of the regular courses in the curriculum of the program. The credits can be given to the students after successful completion of the MOOC course of 12 weeks or more.

The credits will be transferred by the evaluation in terms of assignments or examinations or vivavoce. In case the student is unable to clear MOOC Course examination, the student will have to appear for an Institute-level examination for the respective MOOC course.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Faculty of Science & Technology)

Syllabus of M. Tech.(Manufacturing Engineering), Semester-III

CourseCode:MFG211 Credits:0-0-9 (9)

Course: Dissertation-I Term-work:50Marks

Teaching Scheme: Vivavoce:100Marks

Practical: 18Hr/week

The dissertation shall consist of a report on any research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a design and /or development work that the candidate has executed. The report must include comprehensive literature work on the topic selected for dissertation.

Term-work: The dissertation part-I will be in the form of seminar report on the project work being carried out by the candidate and will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be a senior faculty member from the department.

Viva Voce: The dissertation part-I will be in the form of seminar report on the project work being carried out by the candidate and will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be an external examiner.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

(Faculty of Science & Technology)

Syllabus of M. Tech. (Manufacturing Engineering), Semester-V

Course Code:MFG251 Credits:0-0-12 (12)

Course: Dissertation-II Term-work:100Marks

Teaching Scheme: Vivavoce:100Marks

Practical: 24Hr/week

The dissertation part-II will be in continuation of dissertation part-I and shall consists of a report on the research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a design and /or development work that the candidate has executed. The examinee shall submit the dissertation in triplicate to the head of the institution duly certified by the guide and the concerned head of the department and the Principal that the work has been satisfactorily completed.

Term-work:

The dissertation will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be a senior faculty member from the department.

Viva-Voce:

It shall be consists of a defense presented by the examinee on his research work in the presence of the examiners appointed by the university, one of whom will be the guide and other will be an external examiner.