G. S. Mandal's

 Maharashtra Institute of Technology, Aurangabad

 Maharashtra Institute of Technology, Aurangabad}

(An Autonomous Institute)
 END SEMESTER EXAMINATION
 Second Year B.Tech (Branch) - Feb/Mar-2023

Course Code : EED202
Duration : 2 Hrs

Course Name : Electrical Machines 1
Max. Marks : 50
Date :

Marking Scheme

$\mathrm{Q} .$		
a)	Draw Characteristics of DC Shunt Motors. \qquad Chamenemstos of be shont medor	Marks
b)	What are different losses in transformer. Eddy current, Hysteresis, Copper	2
c)	Write any 4 applications of Synchro's water level detection, water gate control, welding machines, transporting machines, aircraft, and measuring instruments.	2
d)	Draw transformer equivalent circuit referred to secondary	2
e)	Define Back pitch and front pitch Back pitch YB the distance between the top and bottom coil sides of a coil measured around the back of armature is called back pitch. Front pitch YF the distance between the two coil sides connected to the same commutator segment is called front pitch.	2
f)	Write causes of bad commutation A machine is said to be in poor commutation if there is sparking at the brushes and commutator surface. Poor commutation can be caused by mechanical or electrica condition. 2) Non uniform brush pressure. 3) Vibration of brushes in brush holders	2
g)	Brief polarity test in transformer The polarity of a transformer can be additive or subtractive. To find the additive or subtractive polarity, connect one terminal of primary winding with one terminal of the secondary winding and connect the remaining terminals of primary and secondary winding with a voltmeter.	2
h)	Write significance of back emf in DC motor. The decreased back emf causes the larger current to flow through the armature and the large armature current means increased developed torque by the motor. Hence, the torque is increased when the motor slows down. The motor will stop slowing	2

down when the armature current is sufficient to produce the increased torque required by the load
When the load on the motor is decreased, then the torque is momentarily more than the requirement so that the armature is accelerated. As the speed of the armature increases, the back emf also increases and causes the armature current is decrease. The motor will stop accelerating when the armature current is sufficient to develop the torque required by the load
Q. 2 Solve both the following
a) An 8-pole DC shunt generator with 778 wave-connected armature conductors and running at 500 r.p.m. supplies a load of 12.5Ω resistance at terminal voltage of 250 V . The armature resistance is 0.24Ω and the field resistance is 250Ω. Find the armature current, the induced EMF and the flux per pole.

Calculation:

Given that
Terminal voltage $\mathrm{V}=250 \mathrm{~V}$
Load Resistance $R_{L}=12.5 \Omega$
Feild resistance $R_{s t h}=250 \Omega$

Q. 3 Solve any one from the following

	Describe 3 Point starter in detail with its diagram. Diagram 4M Explanation 4M OR A single phase transformer has 1000 turns on primary and 200 turns on secondary. The no load current is 3 amp at a power factor of 0.2 lagging. Calculate the primary current and power factor when the secondary current is 280 Amp at a power factor of 0.8 lagging. $\frac{I_{P}}{I_{S}}=\frac{N_{S}}{N_{P}}$ Therefore, $I_{P}=\frac{N_{S}}{N_{T}} \times I_{S}=\frac{200}{1000} \times 280=56 \mathrm{~A}$ $\cos \varphi_{2}=0.8 \cos \varphi_{0}=0.2 \sin \varphi_{2}=0.6 \sin \varphi_{0}=0.98$ solve for horizontal and vertical components $\begin{aligned} & I_{1} \cos \varphi_{1}=I_{2} \cos \varphi_{2}+I_{0} \cos \varphi_{0}=(56 \times 0.8)+(3 \times 0.2)=45.4 \mathrm{~A} \\ & I_{1} \sin \varphi_{1}=I_{2} \sin \varphi_{2}+l_{0} \sin \varphi_{0}=(56 \times 0.6)+(3 \times 0.98)=36.54 \mathrm{~A} \\ & I_{1}=\sqrt{45.4^{2}+36.54^{2}}=58.3 \mathrm{~A} \\ & I_{\mu}=I_{0} \sin \varphi_{0}=(3 \times 0.6)=1.8 \mathrm{~A} \end{aligned}$ $\tan \varphi_{1} \frac{36.54}{45.4}=0.805$ $\varphi_{1}=38^{\circ}$ Power factor $\cos \varphi_{1}=\cos 38^{\circ}=0.78$ lagging.	8

