Gramaudyogik Shikshan Mandal's

TOUP OF Academic & Research Institutions

THE NEXT BIG THING....

Plastic and Polymer Engineering Department

E-MAGAZINE

The plastic virtues: purity, unity, and truth, keep nature in subjection.

> Guillaume Apollinaire

MESSAGE FROM

HOD'S DESK

The E-magazine of plastic and polymer engineering is an endeavour of our student, which has paved from last few years. I hope this edition would grow interest among the readers about the application of polymer. It is a great pleasure that our Department of Plastic and Polymer Engineering is releasing Issue 4 of "PLASTVISION", for this academic year to explore the creative ideas and activities of our students. In an era of digitization and e learning, it is apt to go digital for expressing our views on different socio-economic, political or cultural issues. It is an active platform for both staff and students to share information, latest technical knowledge and imaginations in all dimensions. This magazine would not have been possible without the enthusiastic and hard work of all student participants, editorial board members and all faculty members. I register my sincere appreciation to the students and editorial team for their timely effort to bring this issue of magazine. I wish all the staff members and students for success in their future endeavours'.

- Dr. Aniruddha Chatterjee

EDITORIAL MESSAGE

Dear Readers,

It gives us immense pleasure and satisfaction to introduce our fourth issue of 'E-PLASTVISION' Magazine for the academic session 2020-21. So this time we have attempted to bring out the talent concealed within our student community, which would help to enhance the practical value of Plastic and Polymer Engineering. This issue includes informative technical as well as non-technical articles and many other things. Plastic and Polymers have given the speed and flexibility to humans to perform their day-to-day task. I express my happiness towards the steps taken by the Institute and the Department in strengthening Engineering and Technology through such a type of activity. We hope you will enjoy reading this issue as much as we have enjoyed while making it. I thank my editorial team, technical team, authors and well-wishers, who are promoting this magazine and making it informative.

- Dr. Saurabh Tayde

CO-EDITORIAL MESSAGE

"Focus on the journey, not the destination. Joy is found not in finishing an activity, but in doing it." -Greg Anderson

Nurturing creativity and inspiring innovation are two of the key elements of a successful education, and a college magazine is the perfect amalgamation of both. It harnesses the creative energies of the academic community and distils the essence of their inspired imagination in the most brilliant way possible. Hence, I am delighted to know that the Department of Plastic and Polymer Engineering is bringing out the fourth issue of their E-Magazine "PLASTVISION" this academic year (2020-21).

I welcome Students with more interest in bringing the article with more bright concepts and innovative ideas in the next issue. I wish them to experience victory in all of their future.

Mr. Ajinkya. M. Satdive

ISSUE EDITOR, BHARGAV A PATEL (3RD YEAR)

It is my immense pleasure to publish the first issue of Plastvision in 2021. The objective of this issue is to accumulate latest innovation and technique used in polymer industry for various applications in today's life. As we all know this a very crucial time for all of us during this crisis, I hope we all must stay safe and keep updating our knowledge and ideas.

Learning gives creativity, Creativity leads to thinking, Thinking provides knowledge, Knowledge makes you great. Dr. A. P. J. Abdul Kalam

VISION OF THE DEPARTMENT

Department of plastic & polymer engineering aspires to achieve excellence by importing education & training to develop young technocrats as multidimensional personalities for the service of mankind.

MISSION OF THE DEPARTMENT

To impart quality education to the aspiring students for fulfilling technological and societal needs by providing

~ State of the art infrastructural facilities and competent facilities.

~ Practical training to face challenges of modern plastic and polymer industries.

Content

- Intro Cover Page
- ✤ HOD's Message
- Editorial Message
- ✤ Co-Editorial Message
- ✤ Issue Editor
- Mission-Vision of The Department
- Department At A Glance
- From Student Corner
- From Faculty Corner
- Events & Achievements
- Faculty Achievement
- Opportunities
- Institute's Achievement

MIT-CENTRE FOR INDUSTRY RELEVANCE IN POLYMER SCIENCE & ENGINEERING (M-CIP)

- Establish Training Centre for all Plastic manufacturing processes.
- Provide maximum facility to new comers in advanced industrial research and innovation.
- Provide support to the industry to students & industrial people.

MAJOR EQUIPMENTS :

Injection Moulding Machine 450 tonnes (Ferromatic Milacron, USA)

Injection Moulding Machine 750 tonnes (Ferromatic Milacron, USA)

Rotomoulding Machine (EN1000 Vinodrai Engineering,Jalna,India)

Stretch Blow Moulding Machine (CV/2STK)

EOT Crane (Electromech, Germany)

3 D Printing Laboratory

- 3D-Printer of FDM by Ender-3 Company (Bed Size: 250 X 250 X 250 mm)
- Industrial Grade 3 D Printer
- Dental 3 D Printer
- VMC 5 Axis

Facilities at M-CIP

Housed in pre-engineered heat insulated building of about 10,000 sq. feet area, MCIP has ultra-modern machines. The facility is backed by material testing laboratory. There is a fully Equipped Training Hall.

"MIT-CENTRE FOR ADVANCED MATERIALS RESEARCH AND TECHNOLOGY" (M-CAMRT)

Objectives

- * Facilitate
- * Support
- * Solve
- Develop skills

MAJOR EQUIPMETS AVAILABLE

- Differential Scanning Calorimeter
- Thermogravimetric analyser
- Zetasizer and Autotitrator
- ► UV-VIS Spectrometer
- Fourier Transform Infrared Spectrophotometer

FROM THE STUDENTS CORNER

Polyphenylsulfone (PPSU) increasingly popular metalreplacement material in medical applications.

The current market trend toward increased safety and quality at a reasonable cost has urged the medical industry to select biocompatible, clean, and environmentally-friendly materials to meet safety, manufacturability, and functionality requirements for medical products. PPSU can withstand continuous-use temperatures up to 260°C and its resistance to chemicals and harsh disinfectants commonly used in hospitals.

High flexural modulus, impact resistance, and durability make PPSU an excellent candidate for metal replacement in applications such as single- and multi-use surgical instruments because it imparts mechanical properties [similar to metal] but at a much lighter weight, Tests show that PPSU can withstand over 1,000 cycles of steam sterilization, which is quite remarkable for a thermoplastic. This material is ETO, gamma, and steam sterilizable, which is crucial for medical device applications. PPSU also is toxicologically inert which makes it an excellent candidate for medical applications,"Polysulfones in the global medical market are estimated to grow from 35.8 million pounds to 49.0 million pounds in 2022 for a compound annual growth rate of 6.5%, according to Johnson, citing a market report from BCC.

Additionally, when healthcare providers were experiencing a of severe shortage personal protective equipment (PPE) in the early stages of the COVID-19 crisis, PPSU films and filaments for additive manufacturing were also being utilized for assembling reusable face shields. The contribution of this unique material to help protect, improve, or even sustain life conditions has become even more evident to the medical device supply chain.

Adesh Siddhamsittiwar (3rd Year)

ABSOLUTE ZERO..!

As a part of our day-to-day life heat plays very important role. From cooking to the freezing of ice-cream. Heat is being transfer from one place to another. Heat is everywhere around us. But have you ever thought about cold? What is lowest temperature possible? What is Absolute Zero? How we can get Absolute Zero? How we measure Absolute Zero temperature? And is it possible to achieve Absolute Zero temperature?

To understand Absolute Zero, we need to talk about heat. What is heat? A Heat is basically thermal energy form due to continues vibrations of particles. Higher the vibrations higher the energy. And measuring the average energy of vibrations is called as the Temperature. The hottest known temperature to the human being is 5.5 Trillion ° C (5.5×10¹² ° C) obtained in Large Hadron Collider, CERN, Switzerland. Now cold is the reverse process of heat where vibrations of particles are much slower than others. Less the vibrations, lower be the temperature. But the temperature at which the vibrations or moment of particles get almost stopped is called as Absolute Zero temperature. It is the lowest possible temperature. Absolute Zero measured in Kelvin (K) which is 0 K (-273.15° C). According to heat transfer, heat transfers from higher energy to lower energy. To get the Absolute Zero we need to remove all the thermal energy by transferring it. As Absolute Zero is a limiting temperature, hence we can never reach the Absolute Zero.

And here are amazing things happens when we try to reach Absolute Zero. According to quantum physics, nothing is ever stationary. We can stop he motion of particles, but we can never stop quantum vibrations. As we slow down the vibrations of a particle, the quantum vibrational waves synchronize with each other and forms completely new state of matter called as Bose-Einstein Condensate, which makes impossible to reach.

Siddhant s Kalyankar (3rd year)

SMART COATING

WHAT IS SMART COATING

Smart coatings are special films with predefined properties that make them sense and respond to environmental and other external stimuli. The coatings with having 'self-healing and self-repair' properties make them suitable for corrosion protection, material protection and other surface improvement applications.

Smart coatings combine functionality with design to offer the usual functions of coatings, such as protection and decoration, as well as unique functions based on environmental stimuli.

SCIENCE AND TECHNOLOGY BEHIND OF SMART COATING:

Multifunctional smart coatings have been developed that sense corrosion, pressure & temperature additionally protective & decorative coatings that are self-healings are in commercial use today.

The properties of smart coating enhance or shown bv acrylic which polymer, ishydrolytically stable &highmolecular weight and additives such as ultra-violet absorber, which prevents free radical attack & polymer degradation.

aim With the of modifying the bulk, properties are called internal stimuli such as those in corrosion sensing or self-healing coatings. Other hand, the surface characteristics relative to environment such as self-cleaning coatings are known as external stimuli.

Vaibhav Patil (3rd Year)

ECO-FRIENDLY GANESH IDOLS

Important to understand the significance of clay as an environment-friendly material. Idols made from shadu clay naturally decompose within a day or two unlike the idols made from materials like PoP that take years to degrade thus causing severe pollution. No kind of paint is used on shadu clay idols thereby eliminating the toxic chemical from being submerged with the water and endangering several aqua fauna. Once the shadu clay dissolves in water it can be used for irrigating the plants.

Vaishnavi Bhadane (3rd Year)

IMPORTANCE OF Plastic during covid Crisis

COVID-19 pandemic The has reemphasized the indispensable role of plastics in our daily life. Plastics in of personal protective terms equipment (PPEs) and other singleuse medical equipment along with packaging solutions owing to their inherent properties have emerged as a life-saviour for protecting the health and safety of the frontline health workers and the common citizens during the pandemic.

Plastic can be a protector if managed properly and complemented by the circular economy strategies in terms of reduction, recycle and recovery, and thereby preventing leakage into the environment.

To safeguard the supply chain of PPEs, several decontamination techniques have been adopted worldwide ensuring their effective reprocessing to prioritize the circular economy within the system.

TOXIC E-WASTE

It's been estimated that around the world, people generated 37.8 million metric tons of electronic waste in 2018, with the U.S. alone responsible for 6.8 million tons, or 16 percent of the world's total. Which is why, now more than ever, it's important that there are new ways of e-waste and plastic disposal. Those are scary numbers because electronic waste has two key components. One is toxins, which when placed in community landfills can pose environmental threats to the soil and water there.

That's a key reason why there's such a strong push today to recycle e-waste, so it doesn't create significant long term environmental and health problems. But we know that e-waste also contains valuable reusable materials, which when removed from these devices can be used to make new products. Those reusable materials include precious metals, gold, platinum, copper wiring – and plastics. E-waste removal isn't that difficult once you set up a strategy. Proper recycling of these materials helps ensure they won't end up polluting our air, soil and waterways.

The process for recycling electronics is in some ways still in transition, with innovations holding out the potential to reduce recycling costs, make the process more efficient, and ensure that recycling is a tool worth investing in. The latest innovation in the field of electronics recycling comes from researchers at the Illinois Sustainable Technology Center, who developed a method for the sustainable recycling of the plastics found in electronic products. The team created a non-toxic solvent that can recover polycarbonate, a group of thermoplastic polymers, from the plastics. This is expected to help provide a nontoxic way to recover all plastics when e-waste is being recycled.

FACULTY CORNER

PLASTIC AND POLYMER ENGINEERING: A FUTURASTIC CAREER PATH WAY

By: Dr. Aniruddha Chatterjee and Dr. Saurabh Tayde

Plastic and Polymer Engineering is one of emerging field of engineering in the todays date having huge scope as a career option. In the 21st century, we are surrounded by different types of things or structures that are made by different types of polymer products such as plastic, moulded material, synthetic fibers, rubbers etc. The use of all these polymer products is increasing day by day. The requirement of eco-friendly & recyclable plastic and proper management of the polymer products is also rising at the same time. This job is done by Polymer Engineers. This field combines the knowledge of both chemistry and engineering from a variety of fields like biotechnology, nanotechnology, mineral processing, synthetic fibers, petroleum refining plants, polymers, petrochemical etc. They use the principles of plant design, process design, thermodynamics, and transport phenomena to develop new products. Recently many polymer and petrochemical industries have started functioning throughout India as well as abroad. Consequently, the importance of Chemical Engineering or Polymer Engineering as a viable career option has increased many times. This subject describes major polymers, structures of different polymers, relations between their properties and their applications.

In India, there are several indigenous plastic, polymer, paint, adhesive and rubber industries. A lot of multinational companies are also setting up in India. This trend represents the growing opportunities for students in the field of Plastic and Polymer Engineering. This field is one of the broadest fields from the perspective of research and development. Also, given the wide range of industries that offer work opportunities to Polymer Engineers a lot of students have shown great interest in the field. Thus, several universities and colleges have started offering this course as a part of their academic programmes.

Major **Government/PSU** Recruiters for Plastic **8**7. **Polymer Engineers** *Oil and Natural Gas Corp. Ltd. (ONGC) * Haldia Petrochemicals Ltd. *GAIL Limited *HAL *Bharat Electronics Ltd *National Chemical Laboratories *National Environmental Research Institute *DRDO

Major Private Sector Recruiters Plastic for 82 **Polymer Engineers** *Reliance Industries Ltd. *TATA Autocomponents *General Electric *E.I. Dupont *Exxonmobil India. *LG Polymers Ltd *Asian Paints *Ackzonobel *Clariant Chemicals *Dow Chemicals

Applications of Antibacterial and Antiviral Polymer Based Functional Material: COVID-19 Repercussions

The ongoing worldwide outbreak due to COVID-19 has necessitated awareness toward ensuring best practices and protocols to avoid and tackle such pandemic, including sustainable reusable personal protective equipments (PPE) such as gloves and isolation gowns. There has been a strong advocacy for reusable gowns as a means to climate-smart healthcare by lowering health care costs, addressing climate change issues, and enhancing flexibility while protecting the safety of frontline health care workers (HCW). Smart wearable e-textile and medical clothing that can continuously record and monitor the physiological conditions of HCWs and patients could be a useful tool. Polymer-base flexible and wearable electronic sensors could potentiality mitigate existing problems associated with the early detection of critical infectious diseases, ensuring healthy lives and well-being of HCWs and patients. Moreover, use of cellulose and their derivatives for production of PPE and recycling of present disposable plastic-based PPE products would assist to decrease the environmental impact and help a shift toward more sustainable circular economy. There has also been a drive toward the implementation of green processing techniques (for example, electrospinning or additive manufacturing) in textile sector, along with introduction of bioactive textile which can offer

EVENTS & ACHIEVEMENTS

- Nayan Gabane from Second Year, Participaed in ROBORACE at Techno-MIT, Arangabad on 2019 and Won First Prize. We heartily congratulate him for his Achievement.
- Shweta Upganlawar, from our PPE Department was selected as a Trainee at Reliance Industries Limited.
- Vishal Awhad and Ravikiran Somase selected in BKT Aurangabad Recently.

FACULTY ACHIEVEMENT

Dr. Aniruddha Chatterjee has received the The International Research Leadership Award: *RULA AWARD-2019* for best research scientist in Material Science and Engineering in emerging scientist category. RULA is recognized by World Research Council and American Medical Council. 26th January, 2020

Plastivision-2020 16-21, January, 2020

FACULTY ACHIEVEMENTS

Name of faculty	Award/Recognition	Date
Dr.A.Chatteree	Best Research in Material Science & Engineering.	26 th January, 2020
Dr.Subhendu Bhandari	Highly commended paper award in Polymer Composites Journal.	30 April, 2020
Dr.Prashant Gupta	Virtual Lab Webinar trainer	04 March, 2020

" Learning never exhausts the mind. "

~Leonardo da Vinci

air 1 1 water TECHNICALLY, THE GLASS IS ALWAYS FULL

OPPORTUNITIES

z

IPT cum Campus Placement Drive of Sudarshan Pollyalloy at MIT Aurangabad for 2020-21 Batch.

ZETASIZER TRAINING DONE BY FACULTIES OF DEPARTMENT.

EVENTS ORGANIZED BY DEPARTMENT

Title of Event/Workshop/STTP/FDP	Duration(Date)	Faculty/Student	Level
Two Days International e-Poster Conference on Current Outlook in Material Science and Engineering.	15-16 th May 2019	Dr.S.Bhandari	International
National Conference on Materials for Advanced Technology and Application.	22-23 rd August 2019	Dr.A.Chatterjee	National

B. TECH. LAST FOUR YEARS FIRST FIVE TOPPER

Sr No	Roll No	Name of Faculty	CGPA	Rank	
	2017-18				
1	BT4660018	TRIVED I PRATHAMESH H.	8 38	lst	
2	BT4660032	GHADGE AKSHAY GAJANAN	8	2nd	
3	BT4660025	SINGH PRINCE KUMAR	7.88	3rd	
4	BT4660005	JAISWAL VAIBHAV B.	7.74	4th	
5	BT4660040	RAUT PRANALI N.	7.6	5th	
1365-057		2018-19	NAME OF THE		
1	462706019	MANE VIKRAM VA SAN TRAO	9 27	lst	
2	462706045	WAGHAMODE PRAVIN KASHINA TH	8.7	2nd	
3	462706005	CHAUHAN DHARMISTH VINOD	7.9	3rd	
4	462706041	TAMBOLI CHAUDHARI SHAHABAJ ALTAF	7.8	4th	
5	462706022	MOHOD LOKESH ARUN	7.69	5th	
		2019-20			
1	461806005	BELGAONKAR MATIN SURAJ	8.44	lst	
2	461806040	UPGANLAWAR SHWETA RAJENDRA	8 32	2nd	
3	461806039	THAKARE KIRAN MILIND	8.24	3rd	
4	461806001	ADHALI VIJAY MAHADEV	8.2	4th	
5	461806007	CHANDKOTI IKHLAS AHMED RIYAZ AHMED	8.18	Sth	

HEARTIEST CONGRATULATIONS TO OUR IN/OFF CAMPUS PLACED STUDENTS

S.N	Name of The Student	Name of Organization	Salary Lakh Per Annum
1	Ms. Shweta Upganlawar	Reliance Industries Ltd., Mumbai	7.5
2	Ms. Pallavi Pokale	Cosmo Films Ltd.	2.5
3	Ms. Akshanda Gattewar	Press Fit India Pvt. Ltd.	2.1
4	Ms. Aishwarya Koganole	SNF FLOPAM India Pvt. Ltd.	2.5
5	Ikhlas Riyaz Chandkoti	Minda CREAT Pune	3.5
6	Kartikey Pandharinath Atule	Darshan Plastics Pvt. Ltd.	2.1
7	Rushikesh Sanjay Taro	Darshan Plastics Pvt. Ltd.	2.1
8	Krushna Purushottam Pawar	Dhruvtara Wiretech Pvt. Ltd.	2.1
9	Vijay Mahadev Adhali	Somochem India Pvt. Ltd.	3.5
10	Pratik Manoj Ghosalkar	Somochem India Pvt. Ltd.	3.5
11	Kiran Milind Thakre	Somochem India Pvt. Ltd.	3.5
12	Sumit Narendra Gawande	Sudarsshan Pollyalloys Pvt. Ltd.	2.3
13	Ravikiran Prabhakar	Balkrishna Industries Ltd.,	
	Somase	Aurangabad	3.6
14		Balkrishna Industries Ltd.,	
	Vishal Avhad	Aurangabad	3.6
15	Rushikesh Lathe	Precitek Components, Pune	2.5
16	Vishnu Prabhakar Ghuge	Sudarsshan Pollyalloys Pvt. Ltd.	2.3
17	Sandip Prakash Jangle	Sudarsshan Pollyalloys Pvt. Ltd.	2.3
18	Vikas Sanjay Jadhav	Sudarsshan Pollyalloys Pvt. Ltd.	2.3
19	Vyankatesh Rameshwar Kshirsagar	Sudarsshan Pollyalloys Pvt. Ltd.	2.3
20	Shubham Laxman Hivrde	APPL Industries Ltd., Pune	3
21	Langardar Mubin Ahmed Mahamedrafiq	Press Fit India Pvt. Ltd.	2.1
22	Kadam Prakash Jotiram	Cosmo Films Ltd., Aurangabad	2.5
23	Solake Mahendra Sunil	Cosmo Films Ltd., Aurangabad	2.5
24	Warunghase Namdev	Chetak Electro Plast Pvt. Ltd.,	
	Shantaram	Aurangabad	2
25		Chetak Electro Plast Pvt. Ltd.,	
	Singh Anand Ramsurat	Aurangabad	2
26	Belgaonkar Matin Suraj	BYJU's - Think & Learn Pvt. Ltd.,	8
27	Wagh Aniket Vilas	Entermonde Polycoaters Ltd, Nashik	2.5

IN-PLANT TRAINING PLACEMENT OF ACADEMIC YEAR: 2019–20 (PPE DEPARTMENT)

Total No. Of Students Placed for In-Plant	58
Training	
No. Of Students Receiving Stipends	32
0 1	
Highest Stipend Amount (INR / Per Month)	20000/-
	,
Average Stipend Amount (INR / Per Month)	8187.5/-

S.N	Name of student	Name of Company/Organization	Location
1	Pratik Manoj Ghosalkar	Akzo Nobel India	Mumbai
2	Sushant Prakash Nandokar	Akzo Nobel India	Mumbai
3	Arabaj Khaja Aga	Anil Plastics & Enterprises	Pune
4	Shantanu Dhananjay Bhavthankar	Anil Plastics & Enterprises	Pune
5	Prakash Jotiram Kadam	Anil Plastics & Enterprises	Pune
6	Pradeep Datta Khoje	Annex Drip Irrigation Systems Pvt. Ltd.	Aurangabad
7	Nitin Dilip Waykos	Annex Drip Irrigation Systems Pvt. Ltd.	Aurangabad
8	Aishwarya Shiwappa Koganole	SNF Flowpam Pvt. Ltd.	Vapi
9	Sudesh Padmakar patil	Balkrishna Tyre Industries Ltd.	Aurangabad
10	Vishal Ambadas Avhad	Cosmo Films Ltd.	Aurangabad
11	Abhishek dattatray Jadhav	Cosmo Films Ltd.	Aurangabad
12	Pallavi Shrikant Pokale	Cosmo Films Ltd.	Aurangabad
13	Aditi Rangnath Thorat	Cosmo Films Ltd.	Aurangabad
14	Namdev Shantaram Warunghase	Cosmo Films Ltd.	Aurangabad
15	Vijay Mahadev Adhali	CREAT - Minda Industries Ltd.	Pune
16	Ikhlas Riyaz Chandkoti	CREAT - Minda Industries Ltd.	Pune
17	Sunilkumar Yashwant Sharma	Creative Components Pvt. Ltd.	Pune
18	Shivam Vishnu Hiwarkar	Creative Components Pvt. Ltd.	Pune
19	Shubham Gajanan Kitukale	Creative Components Pvt. Ltd.	Pune
20	Vishal Subhash Channe	Pioneer Engineering & Design Pvt. Ltd	Pune

21	Sidheshwar Pandharinath	Darshan Plastics Put Itd	Aurangabad
21	Harne	Darshan Flashes Fvt. Ltu.	Aurangabau
22	Kartikey Pandharinath Atule	Darshan Plastics Pvt. Ltd.	Aurangabad
23	Krushna Purushottam Pawar	Darshan Plastics Pvt. Ltd.	Aurangabad
24	Shubham Sanjay Rane	Darshan Plastics Pvt. Ltd.	Aurangabad
25	Mahendra Sunil Solake	Darshan Plastics Pvt. Ltd.	Aurangabad
26	Rushikesh Sanjay Taro	Darshan Plastics Pvt. Ltd.	Aurangabad
		Defense Institute of Advanced	
27	Chinmay Nagesh Zinge	Technology	Pune
00	Shunata Daian dua Un ganlawan	Defense Institute of Advanced	Dune
20	Shweta Kajendra Opganiawar	Defense Institute of Advanced	Pulle
29	Matin Surai Belgaonkar	Technology	Pune
30	Vaibhav Narendrakumar	Shaily Engineering Plastics Ltd.	Vadodara
	Sharma		
31	Vipul Anil Bagal	Jain Irrigation Systems Ltd.	Jalgaon
32	Kiran milind Thakare	JMS Industries	Aurangabad
33	Parthkumar Dipakbhai Patil	Kishori Industries	Aurangabad
34	Mukta Shivaji Bhatjire	Legrand India Pvt. Ltd.	Nashik
35	Shubham Laxman Hivrde	Badve Engineering Pvt. Ltd.	Aurangabad
36	Sayali Navnath Sawant	Minda Industries Ltd.	Pune
37	Utkarsh Bharat Chougule	Polmann India Pvt. Ltd.	Shrirampur
38	Sumit Narendra Gawande	Polmann India Pvt. Ltd.	Shrirampur
39	Akshanda Ajay Gattewar	Press Fit & Pipes India Pvt. Ltd.	Thane
40	Mubin Ahmed Mahamedrafiq Langardar	Press Fit & Pipes India Pvt. Ltd.	Thane
41	Anand Ramsurat Singh	Ram Industries	Aurangabad
42	Vaibhav Sambhaji Hirgude	Raut Engineering Pvt. Ltd.	Mumbai
43	Rushikesh Sanjay Lathe	Raut Engineering Pvt. Ltd.	Mumbai
44	Shubham Raosaheb Mokale	Raut Engineering Pvt. Ltd.	Mumbai
45	Ravikiran Prabhakar Somase	Raut Engineering Pvt. Ltd.	Mumbai
46	Aniket Vilas Wagh	Raut Engineering Pvt. Ltd.	Mumbai
47	Vishnu Prabhakar Ghuge	Sudarsshan Plastiblends Pvt. Ltd.	Aurangabad
48	Vikas Sanjay Jadhav	Sudarsshan Plastiblends Pvt. Ltd.	Aurangabad
49	Sandip Prakash jangle	Sudarsshan Plastiblends Pvt. Ltd.	Aurangabad
	Vyankatesh Rameshwar		
50	Kshirsagar	Sudarsshan Plastiblends Pvt. Ltd.	Aurangabad
51	Ajay Ratnakar Gadge	Sudarsshan Plastiblends Pvt. Ltd.	Aurangabad
52	Bhukya Vinay Devasothu	Agua Petals Ind. Pvt. Ltd	Medak, Telangana
53	Chaitali Kailashrao Deshmukh	Connectwell Industries Pvt. Ltd.	Mumbai
54	Mamta Durga Dhotre	Connectwell Industries Pvt. Ltd.	Mumbai
55	Akshay Arvind Mange	Press Fit & Pipes India Pvt. Ltd.	Thane
56	Saurabh Rameshwar Panchal	Badve Engineering Pvt. Ltd.	Aurangabad
57	Uddesh Prakash Ranvir	AlfaMech Pvt. Ltd.	Nashik
58	Syed sufiyan Ahmed javed	Vatan Textiles Ltd.	Aurangabad

INDUSTRIAL VISIT

Department has been organized an Industrial Visit on 5th March 2020, at Vinodrai Engineers,Jalna

Industrial Visit at Fores Elastomech India Pvt. Ltd. Waluj, Aurangabad

The Following Faculties Have Successfully Completed The Technical Webinar Organized By CIPET Aurangabad

S.N	Faculty	Description of Online Course	Duration
1	Dr. Aniruddha Chatterjee	Plastic product development and cost	04/03/2021 to
		optimization	05/03/2021
2	Ms. Aarti Mulay	Plastic product development and cost	04/03/2021 to
		optimization	05/03/2021
3	Ms. Aastha Dutta	Plastic product development and cost	04/03/2021 to
		optimization	05/03/2021
3	Mr. Mujahid. A. Ansari	Plastic product development and cost	04/03/2021 to
		optimization	05/03/2021
4	Mr. Yaduraj Thakare	Plastics Toys manufacturing using	09/02/2021 to
		Injection and Blow Molding Process	10/02/2021
5	Mr. Vijendra Chaudhari	Additive manufacturing using FDM 3D	17/02/2021 to
		Printing Technology	18/02/2021
		Plastics Toys manufacturing using	09/02/2021 to
		Injection and Blow Molding Process	10/02/2021
6	Dr. Prashant Gupta	Testing and quality control of PVC pipes	25/02/2021 to
		as per IS 4985:2000	26/02/2025
7	Dr. Saurabh Tayde	Additive manufacturing using FDM 3D	17/02/2021 to
		Printing Technology	18/02/2021
8	Mr. Ajinkya Satdive	Additive manufacturing using FDM 3D	17/02/2021 to
		Printing Technology	18/02/2021
9	Ms. Pallavi Shindikar	Polymer Material and Its Application in	23/02/20221
		Agriculture	to 24/02/2021
		Plastic film biodegradation technique as	02/03/2021 to
		per ISO 17088	03/03/2021

The following faculty members have successfully completed 5-day online FDP on the theme "Inculcating Universal Human Values in Technical Education" organized by All India Council for Technical Education (AICTE).

- Ms. Aarti Mulay
- Ms. Aastha Dutta
- Mr. Yaduraj Thakare
- Dr. Subhendu Bhandari
- Dr. Prashant Gupta
- Dr. Saurabh Tayde
- Mr. Ajinkya Satdive

INSTITUTE ACHIEVEMENT

