G.S. Mandal's
 MAHARASHTRA INSTITUTE OF TECHNOLOGY, AURANGABAD
 (An Autonomous Institute)

Name of the Examination: Second Year B.Tech (Computer Science \& Engineering) Feb/Mar 2023

Name of the Course : Discrete Mathematics and Graph Theory
Course Code : CSE 202
Name of the Expert : Mr. Rahul Mapari
Designation : Assistant Professor
Department : Computer Science and Engineering
Contact Number : 9028084446

S.No	$\begin{aligned} & \text { Sub } \\ & \text { Q.No } \end{aligned}$		Marks
1	a	Define Proposition Answer: Is a statement which is either true or false but not both at the same time.	2 Marks
	b	Represent following set with set builder notation: "A is a set of all integers greater than 10 " Answer: $A=\{x \mid x>10, x \text { is integer }\}$	2 marks
	c	Let $P=\{a, b, c\}$ and $Q=\{1,2,3,4\}$, and $f: P->Q$ such that $\mathrm{f}=\{(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 1)\}$ Find the domain, and range of function. Answer: $\begin{aligned} & D(R)=\{a, b, c\} \\ & \operatorname{Rn}(R)=\{1,2\} \end{aligned}$	$\begin{aligned} & \hline 2 \\ & \text { Marks } \end{aligned}$

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { What is combination? } \\ \text { Answer: } \\ \text { In mathematics, a combination is a way of selecting items from a } \\ \text { collection where the order of selection does not matter. Suppose we have } \\ \text { a set of three numbers P, Q and R. Then in how many ways we can } \\ \text { select two numbers from each set, is defined by combination. }\end{array}\right\}$

		Answer: Let S be the set of students who have taken a course in Spanish, F the set of students who have taken a course in French, and R the set of students who have taken a course in Russian. Then $\begin{aligned} & \|S=1232 . \quad\| F\|=879 . \quad\| R=114 \\ & \left\|S^{\prime}: F\right\|=\left\|03 .\left\|S^{\prime}\right\| R\right\|=23 .\|F \cdot R\|=14 \end{aligned}$ and $\mid S: F \cup R!=\underline{Y} O Y$ When wa insert these quatives into the cytation $\|S \backsim F \cup R\|=\|S+\|F+R\|-\|S O F-S \cap R\|-\|F \cap R+S \cap F \cap R\|$ we obtain $2092=1232+879+114-103-23-14+1 S C A R .$ who have taken courses in Spamish. French, and Russian, This is illustrated in Figure 4. OR Draw the Venn diagrams for all set operations Answer:	
4		Let, $A=\{a, b, c, d\}, R=\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c}),(\mathrm{d}, \mathrm{d}),(\mathrm{b}, \mathrm{a}),(\mathrm{d}, \mathrm{c})\}$, determine whether R is an equivalence relation. Answer: The given relation is reflexive, symmetric and transitive. So it is a equivalence relation. OR Let $A=\{1,2,3\}, R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ Determine whether R is partial order relation or not.	8Mark S

OR

Prove that the structure $(\mathrm{Q},+,$.$) is a Field.$
Answer:
The ($\mathrm{Q},+$) has following properties,
a. Closure
b. Associativity
c. Identity element
d. Inverse
e. Commutative

The (Q..) has following properties,
a. Closure
b. Associativity
c. Identity element
d. Inverse
e. Commutative

So, the given ring is ring of unity as it is having multiplicative identity and it also has cumutative property.
So the given ring is Commutative ring of unity.
And every element in Q has a multiplicative inverse, so the given ring is field

