

G .S. Mandal's MAHARASHTRA INSTITUTE OF TECHNOLOGY, AURANGABAD (An Autonomous Institute)

Name of the Examination: Second Year B.Tech (Computer Science & Engineering) Feb/Mar 2023

Name of the Course	: Discrete Mathematics and Graph Theory
Course Code	: CSE 202
Name of the Expert	: Mr. Rahul Mapari
Designation	: Assistant Professor
Department	: Computer Science and Engineering
Contact Number	: 9028084446

S.No	Sub		Marks
*	Q.No		
1	а	Define Proposition	2
		Answer:	Marks
		Is a statement which is either true or false but not both at the same time.	
	b	Represent following set with set builder notation:	2
		" A is a set of all integers greater than 10"	marks
		Answer:	
		$A=\{x x > 10, x \text{ is integer}\}$	
	С	Let $P=\{a,b,c\}$ and $Q=\{1,2,3,4\}$, and f: P-> Q such that	2
		f={(a,2),(b,1),(c,1)} Find the domain, and range of function.	Marks
		Answer:	
		$D(R) = \{a,b,c\}$	
		$Rn(R) = \{1,2\}$	

SET II			
	d	What is combination?	2
		Answer:	marks
		In mathematics, a combination is a way of selecting items from a	
		collection where the order of selection does not matter. Suppose we have	
		a set of three numbers P, Q and R. Then in how many ways we can	
		select two numbers from each set, is defined by combination.	
	е	Give the degree of each vertex for the below graph	2
		a f e g	Marks
		Answer:	
		a=2,b=4,c=4,d=1,e=3,f=4,g=0	
	f	Define Semi Group.	2
		Answer:	marks
		An algebraic structure (S,*) which has associative property is	
		called semigroup.	
	G	Let, $P = \{1, 2, 3, 4\}, Q = \{a, b, c\}$ and	2
		$R = \{(1,a)(2,b)(3,c)(4,c)(4,b)\}$ Find Complement of R Answer:	marks
		Complement of $R = \{(1,b), (1,c), (2,a), (2,c), (3,a), (3,b), (4,a)\}$	
	Н	Draw K _{2,3} and K _{1,5}	2
		Answer:	marks

SET II

2

3

Use mathematical induction to show that

 $1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$

for all nonnegative integers n.

Sector 2. Let P(n) be the proposition that $1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$ for the integer *n*.

 $31.153 \times 32.151 P(0)$ is true because $2^0 = 1 = 2^1 = 1$. This completes the basis step.

INDUR ID F SIPP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary nonnegative integer k. That is, we assume that

 $1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$

To carry out the inductive step using this assumption, we must show that when we assume that P(k) is true, then P(k + 1) is also true. That is, we must show that

 $1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} = 2^{(k+1)+1} = 1 = 2^{k+2} = 1$

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (1 + 2 + 2^{2} + \dots + 2^{k}) + 2^{k+1}$$
$$= (1 + 2 + 2^{2} + \dots + 2^{k}) + 2^{k+1}$$
$$= 2 + 2^{k+1} - 1$$
$$= 2^{k+2} - 1$$

Note that we used the inductive hypothesis in the second equation in this string of equalities to replace $1 + 2 + 2^2 + \cdots + 2^k$ by $2^{k+1} - 1$. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction we know that P(n) is true for all nonnegative integers *n*. That is, $1 + 2 + \dots + 2^n = 2^{n+1} - 1$ for all nonnegative integers *n*.

OR

Demonstration That $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ Are Logically Equivalent.

Answer:

r	9	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
Ţ	Т	T	Т	Т	T	Т	Т
Т	1.	F	F	Т	Т	T	Т
τ	F	т	F	Т	Т	Т	т
Т	F	F	F	Т	Т	Т	Т
F	Т		Т	т	т т	Т	
F	Т	F	F F F	T F	F		
F	FTFFF	F	F T	F			
F T F F F F	F F F	F	F	F	F	F	
a cou have	rse in taken	Frenc course	h, and 1 es in both	14 have taker h Spanish and	n a course d French	e in Russ , 23 have	879 have taken ian. Further, 10 taken courses both French ar

Russian. If 2092 students have taken at least one of Spanish, French, and Russian, how many students have taken a course in all three languages?

8

marks

SET	11
-----	----

Answer:	
Let S be the set of students who have taken a course in Spanish, F the set of students	
who have taken a course in French, and R the set of students who have taken a course in Russian. Then	
$ S = 1232, F = 879, R = 114, S \cap F = 103, S \cap R = 23, F \cap R = 14.$	
and	
$(S \Rightarrow F \cup R) = 2092.$	
When we insert these quantities into the equation	
$ S \cup F \cup R = S + F + R - S \cap F - S \cap R - F \cap R + S \cap F \cap R $	
we obtain	
$2092 = 1232 + 879 + 114 - 103 - 23 - 14 + S \cap F \cap R .$	
We now solve for $ S \cap F \cap R $. We find that $ S \cap F \cap R = 7$. Therefore, there are seven students who have taken courses in Spanish. French, and Russian. This is illustrated in Figure 4.	
OR Draw the Venn diagrams for all set operations	
Answer:	
Let, A={a,b,c,d}, R={(a,a),(b,b),(c,c),(d,d),(b,a),(d,c)}, determine whether R is an equivalence relation. Answer:	8Mark s
The given relation is reflexive, symmetric and transitive.	
So it is a equivalence relation.	
OR Let $A=\{1,2,3\}, R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ Determine whether R is partial order relation or not.	

	Represent the graph shown in Figure with an incidence material V_1 V_2 C_0 V_3 V_3 V_4 V_5	ITIX
	Answer: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	ň.
6	tasks T1,T2,,Tmcan be done in w1,w respectively (the condition is that no performed simultaneously), then the numb do one of these tasks is w1+w2++wm. I two tasks A and B which are disjoint (i.e. A mathematically $ A \cup B = A + B $	sequence of v2,wm ways tasks can be ber of ways to If we consider $A \cap B = \emptyset$), then sequence of 2,wm ways e occurrence of ·×wm ways to
	 Question – A boy lives at X and wants to go to School home X he has to first reach Y and then Y to Z. He may either 3 bus routes or 2 train routes. From there, he can e bus routes or 5 train routes to reach Z. How many ways from X to Z? Solution – From X to Y, he can go in 3+2=53+2=5 ways Thereafter, he can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule or Compared to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (Rule to the can go Y to Z in 4+5=94+5=9 ways (R	y go X to Y by either choose 4 are there to go (Rule of Sum).

<u> </u>	from X to Z he can go in $5 \times 9 = 455 \times 9 = 45$ ways (Rule of Product).			
	OR Prove that the structure (Q,+,.) is a Field.			
	Answer:			
	The $(Q,+)$ has following properties,			
	a. Closure			
	b. Associativity			
	c. Identity element			
	d. Inverse			
	e. Commutative			
	The (Q,.) has following properties,			
	a. Closure			
	b. Associativity			
	c. Identity element			
	d. Inverse			
	e. Commutative			
	So, the given ring is ring of unity as it is having multiplicative			
	identity and it also has cumutative property.			
	So the given ring is Commutative ring of unity.			
	And every element in Q has a multiplicative inverse, so the given			
	ring is field			